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2 Département de Mathématiques, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

Received: 6 February 2004 / Accepted: 6 July 2004
Published online: 11 January 2005 – © Springer-Verlag 2005

Abstract: The goal of the present paper is to calculate the determinant of the Dirac
operator with a mass in the cylindrical geometry. The domain of this operator consists
of functions that realize a unitary one-dimensional representation of the fundamental
group of the cylinder with nmarked points. The determinant represents a version of the
isomonodromic τ -function, introduced by M. Sato, T. Miwa and M. Jimbo. It is cal-
culated by comparison of two sections of the det∗-bundle over an infinite-dimensional
grassmannian. The latter is composed of the spaces of boundary values of some local
solutions to the Dirac equation. The principal ingredients of the computation are the
formulae for the Green function of the singular Dirac operator and for the so-called
canonical basis of global solutions on the 1-punctured cylinder. We also derive a set of
deformation equations satisfied by the expansion coefficients of the canonical basis in
the general case and find a more explicit expression for the τ -function in the simplest
case n = 2.

1. Introduction

The main objective of quantum field theory is the calculation of correlation functions of
local operators, usually represented via functional integrals

〈O1(x1) . . .On(xn)〉 =
∫ Dϕ O1(x1) . . .On(xn)e

S[ϕ]
∫ Dϕ eS[ϕ]

.

For a generic interacting QFT such calculation can be done only by means of pertur-
bation theory. However, in two dimensions there is an interesting way to construct an
interacting theory from the free one. Let us consider the action of free massive Dirac
fermions in the flat spacetime,

S[ψ, ψ̄] =
∫
d2xψ̄Dψ.
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Correlation functions of the (interacting) monodromy fields are defined as

〈Oλ1(a1) . . .Oλn(an)〉 =
∫ DψDψ̄ e

∫
d2x ψ̄Da,λψ

∫ DψDψ̄ e
∫
d2x ψ̄Dψ

. (1.1)

The integration in the numerator is performed over field configurations that are branched
at the points aν with the monodromies e2πiλν (ν = 1, . . . , n). This change of domain
of the Dirac operator is symbolically reflected by indexing Da,λ. The integrals in (1.1)
can be formally evaluated to the determinants of the corresponding operators,

〈Oλ1(a1) . . .Oλn(an)〉 = detDa,λ

detD
. (1.2)

Note, however, that the RHSs of both (1.1) and (1.2) are equally ill-defined quantities.
The determinants of Dirac operators on compact manifolds are usually determined via

the ζ -function regularization. Starting from [16], they have been extensively studied in
the mathematical literature. The massless Dirac operators on Riemann surfaces deserve
special attention, as multiloop contributions to the partition function in the string theory
are expressed through their determinants (rigorously defined by D. Quillen in [15]).
These determinants can be thought of as the functions on the moduli space of complex
structures on the surface.

In the case we are interested in the Dirac operator is defined not on a compact mani-
fold, but on the universal covering of a surface with marked points, the determinant being
the function of their positions. The problem of rigorous definition of the determinant
and the Green function for the Dirac operator with branching points on the Euclidean
plane was solved by Palmer in [10]. His work relies heavily on the analysis of monodr-
omy preserving deformations for the Dirac operator, developed earlier by Sato, Miwa
and Jimbo [17]. More precisely, Palmer’s determinant represents another version of the
SMJ τ -function. Its logarithmic derivatives with respect to the coordinates of branching
points are expressed via the expansion coefficients of some special solutions to the Dirac
equation, that can be constructed from the so-called canonical basis of solutions. The
theory of isomonodromic deformations gives a set of nonlinear differential equations
satisfied by these expansion coefficients. Moreover, in the simplest case n = 2 an explicit
formula for the determinant was found [10].

Later similar results were obtained for the Dirac operator on the Poincaré disk [8,
12, 13]. In this connection we should also mention the recent work of Doyon [5], where
the two-point correlation function of monodromy fields in the hyperbolic geometry was
calculated by field-theoretic methods.

In the present paper, we define and calculate the determinant of the massive Dirac
operator in cylindrical geometry. The latter corresponds to QFT in the finite volume or at
non-zero temperature. This work was inspired by recent progress in the study of the Ising
model — calculation of finite-size correlation functions [1, 2], spin matrix elements [3]
and direct derivation of the differential equations satisfied by the two-point correlator
in the continuum limit [7]. The Ising model is related to the above theory with special
monodromy λν = ± 1

2 .
This paper is organized as follows. In the next section we introduce the canonical

basis of global solutions to the Dirac equation on the cylinder and calculate it explicitly
for n = 1 (see Theorem 2.3). All subsequent computations are based on these formulae.
The Green function of the singular Dirac operator is defined in Sect. 3. Its derivatives
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with respect to the coordinates of branching points are expressed through some solu-
tions to the Dirac equation and have remarkable factorized form (formulae (3.23) and
(3.24)). At the end of the section, the Green function on the 1-punctured cylinder is com-
puted (see (3.29)–(3.30)). Section 4 is devoted to the definition and calculation of the
τ -function. We introduce the det∗-bundle over an infinite-dimensional grassmannian that
consists of the spaces of boundary values of some local solutions to the Dirac equation.
The τ -function is obtained by comparison of the canonical section of this det∗-bundle
with a section that is constructed using the one-point Green functions. The logarithmic
derivatives of the τ -function can also be written in terms of the expansion coefficients of
the solutions (3.20). This shows that it is independent of the chosen localization. As an
illustration, we find a more explicit expression for the τ -function when n = 2 (formula
(4.25)). Finally, in Sect. 5 a set of deformation equations for the expansion coefficients is
derived. We conclude with a brief discussion of possible generalizations, open problems
and application of obtained results in quantum field theory at non-zero temperature.

2. Canonical Basis of Solutions to Dirac Equation

2.1. Definitions. Let a = (a1, . . . , an) be a collection of n distinct points on the cylin-
der C. The fundamental group π1(C\a; x0) is generated by homotopy classes of n + 1
loops γ0, . . . , γn shown in Fig. 1. It acts on the universal covering C̃\a by deck trans-
formations. Let us fix a one-dimensional unitary representation

ρλ : π1(C\a; x0) → U(1), [γν] �→ e−2πiλν , ν = 0, . . . , n, (2.1)

λ0 ∈ R, λν ∈ R\Z, ν = 1, . . . , n.

As usual, we replace the cylinder by the strip S = {(x, y) ∈ R
2 : 0 ≤ y ≤ β} whose

upper and lower edges are identified. The Dirac operator on C̃\a is induced by the Dirac
operator on R

2, which can be written as

D =
(

m
2 −∂z

−∂z̄ m
2

)

, (2.2)

where z, z̄ — standard complex coordinates
{
z = x + iy,

z̄ = x − iy,

{
∂z = 1

2 (∂x − i∂y),

∂z̄ = 1
2 (∂x + i∂y).

γ

γ

γ
0

n

1

x 0

a

a n

1

Fig. 1
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We are looking for multivalued solutions ψ̃ : C̃\a → C
2 to Dirac equation that transform

according to the representation (2.1),

Dψ̃(x) = 0, ψ̃(γ x) = ρλ([γ ]) · ψ̃(x).

This problem can be reformulated as follows. Fix a system of branchcuts b =
(b1, . . . , bn; d0, . . . , dn) shown in Fig. 2 and consider the solutions to Dirac equation on
C\b that can be continued across the branchcuts away from the points a1, . . . , an. The
solutions we are interested in have left and right continuations across bν that differ by

the factor e2πiλν (ν = 1, . . . , n). The continuations across dν differ by exp
(
2πi

ν∑

k=0
λk
)
,

ν = 0, . . . , n.
To describe the local behaviour of such solutions in the neighbourhood of the point

aν , consider an open disk B of sufficiently small but finite radius, centered at aν , and
introduce in B polar coordinates

{
r = |z− aν |1/2,
ϕ = 1

2i ln z−aν
z̄−āν ,

{
∂z = 1

2 e
−iϕ(∂r − i

r
∂ϕ),

∂z̄ = 1
2 e

iϕ(∂r + i
r
∂ϕ).

The local form of the Dirac operator on B is then

D = 1

2

(
m −e−iϕ(∂r − i

r
∂ϕ
)

−eiϕ(∂r + i
r
∂ϕ
)

m

)

.

Since for any multivalued solution ψ the function e−iλνϕψ is single-valued on B, it can
be expanded in Fourier series. Substituting the series into Dirac equation, one obtains
[17]

ψ[aν] =
∑

k∈Z+ 1
2

{
akwk+λν [aν] + bkw

∗
k−λν [aν]

}
, (2.3)

y

x

a

a
a n

2

1

0

β

d 0 d dn1

b1 b b2 n

d d d0 1 n

Fig. 2
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where

wl[aν] =
(
ei(l−1/2)ϕIl−1/2(mr)

ei(l+1/2)ϕIl+1/2(mr)

)

, w∗
l [aν] =

(
e−i(l+1/2)ϕIl+1/2(mr)

e−i(l−1/2)ϕIl−1/2(mr)

)

,

(2.4)

and Il(x) is the modified Bessel function of the first kind.
To obtain some kind of regularity, we put certain conditions on the singular behaviour

of the function ψ at the point aν . There two essential types of constraints:

• Let 0 < λν < 1 and require ψ to be square integrable in the neighborhood of aν .
When |z| → aν , the asymptotics of special solutions has the form

wl[aν] ∼






(m(z−aν)/2)l−
1
2

(l− 1
2 )!

(m(z−aν)/2)l+
1
2

(l+ 1
2 )!




 + . . . , w∗

l [aν] ∼






(m(z̄−āν )/2)l+
1
2

(l+ 1
2 )!

(m(z̄−āν )/2)l−
1
2

(l− 1
2 )!




 + . . . ,

where factorials are understood as l! = �(l + 1). Then to satisfy the condition of
square integrability, a part of coefficients in (2.3) must vanish,

ψ[aν] = a−1/2w−1/2+λν [aν] +
∑

k>0

{
akwk+λν [aν] + bkw

∗
k−λν [aν]

}
. (2.5)

• Let − 1
2 < λν <

1
2 and require

(
(z− aν)

−λν 0
0 (z̄− āν)

λν

)

ψ ∈ H 1[aν], (2.6)

where H 1[aν] denotes the space of functions that are single-valued and square
integrable in the neighborhood of aν together with their first derivatives. Then

ψ[aν] =
∑

k>0

{
akwk+λν [aν] + bkw

∗
k−λν [aν]

}
. (2.7)

Now let us consider multivalued solutions with monodromy (2.1) that are square inte-
grable at |x| → ∞ and satisfy (2.5) or (2.7) in the neighborhood of each singularity.
The spaces of solutions of the first and second type will be denoted by Wa,λ and W̃a,λ

respectively.

Theorem 2.1. dim Wa,λ ≤ n; dim W̃a,λ = 0.

� Consider a positive definite scalar product on Wa,λ:

〈u,w〉 = 〈w, u〉 = m2

2

∫

C\a
ū · w idz ∧ dz̄ = m2

2

∫

C\a
(ū1w1 + ū2w2) idz ∧ dz̄. (2.8)

Note that the expression under the integral is indeed a single-valued function on C\a.
This function is integrable due to imposed boundary conditions. From the Dirac equation
on C\b it follows that

{
m
2 w1 = ∂zw2,
m
2 w2 = ∂z̄w1,

{
m
2 ū1 = ∂z̄ū2,
m
2 ū2 = ∂zū1,
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and we get

m

2
(ū1w1 + ū2w2) dz ∧ dz̄ = −d(ū2w1dz) = d(ū1w2dz̄). (2.9)

Denote by Dε(aν) the disk of radius ε about aν . Using (2.9) and the Stokes theorem,
one obtains

〈u,w〉 = im

n∑

ν=1

lim
ε→0

∮

∂Dε(aν)

ū2w1dz

= im

n∑

ν=1

lim
ε→0

∮

∂Dε(aν)

(

a
(ν)
−1/2(u)

(mz̄/2)λν

λν!
+ . . .+ b

(ν)
1/2(u)

(mz/2)−λν
(−λν)! + . . .

)

×
(

a
(ν)
−1/2(w)

(mz/2)λν−1

(λν − 1)
+ . . .+ b

(ν)
1/2(w)

(mz̄/2)1−λν
(1 − λν)

+ . . .

)

dz

= −4
n∑

ν=1

b
(ν)
1/2(u) a

(ν)
−1/2(w) sin πλν. (2.10)

Or, analogously

〈u,w〉 = −im
n∑

ν=1

lim
ε→0

∮

∂Dε(aν )

ū1w2dz̄

= −im
n∑

ν=1

lim
ε→0

∮

∂Dε(aν )

(

a
(ν)
−1/2(u)

(mz̄/2)λν−1

(λν − 1)!
+ . . .+ b

(ν)
1/2(u)

(mz/2)1−λν
(1 − λν)!

+ . . .

)

×
(

a
(ν)
−1/2(w)

(mz/2)λν

λν !
+ . . .+ b

(ν)
1/2(w)

(mz̄/2)−λν
(−λν)! + . . .

)

dz̄

= −4
n∑

ν=1

a
(ν)
−1/2(u) b

(ν)
1/2(w) sin πλν = 〈w, u〉. (2.11)

If the dimension of Wa,λ were greater than n, we would be able to construct a solution
v ∈ Wa,λ with all a(ν)−1/2(v) = 0 (ν = 1, . . . , n). This solution has zero norm 〈v, v〉 = 0
and, therefore, vanishes identically, implying the first statement of the theorem.

Note that the solutions of the second type are square integrable with respect to the
inner product (2.8). We can show in absolutely analogous fashion that 〈v, v〉 = 0 for all
v ∈ W̃a,λ. Consequently, dim W̃a,λ = 0. ��

Suppose1 that dim Wa,λ = n. Then we can fix a canonical basis {wµ}µ=1,... ,n of this

space, having chosen a(ν)−1/2(wµ) = δµν :

wµ[aν] = δµνw−1/2+λν [aν] +
∑

k>0

{
a
(ν)
k (wµ)wk+λν [aν] + b

(ν)
k (wµ)w

∗
k−λν [aν]

}
.

(2.12)

1 The proof is based on some technique from functional analysis and is very close to the proof of
Theorem 3.2.4 in [17].
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Remark. Let us calculate the inner product of two elements of the canonical basis in
two ways — by the formula (2.10) and its “conjugate” (2.11):

〈wµ,wν〉 = −4b(ν)1/2(wµ) sin πλν = −4b(µ)1/2(wν) sin πλµ. (2.13)

We have obtained a set of algebraic relations between the expansion coefficientsb(ν)1/2(wµ).
In what follows, we will deduce additional relations and use them in the construction of
deformation equations.

The “planar” analog of the previous theorem has an instructive illustration when
n = 1. In the case of a single branching point one can suppose it to lie at zero. Then any
solution with required singular behaviour is represented by the expansion

ψ = a−1/2w−1/2+λ[0] +
∑

k>0

{
akwk+λ[0] + bkw

∗
k−λ[0]

}

on the whole punctured plane R
2\{0}. This expansion will be square integrable at infinity

if and only if





ak = 0 for k > 0,
bk = 0 for k > 1,
b1/2 = −a−1/2,

since the only integrable combinations of partial solutions (2.4) are

ŵl[0] = w ∗
−l[0] − wl[0].

Then, as one could expect, for n = 1 the space W0,λ is generated by the single element
of canonical basis

w = w−1/2+λ[0] − w1/2−λ[0] = −ŵ1/2−λ[0].

With some effort, it is also possible to find an explicit formula for the canonical basis
on the 1-punctured cylinder. This problem will be solved in the next subsection, using
some generalization of the method of Fonseca and Zamolodchikov [6].

2.2. Canonical basis on the cylinder with one branching point. We are looking for the
solution ψ to Dirac equation on the strip 0 < y < β,

(
m
2 −∂z

−∂z̄ m
2

)(
ψ1
ψ2

)

= 0,

which has the following properties:

• The continuations of this solution to the left and right halfplane are quasiperiodic
in y,

ψ(x, y + β) = e2πiλ0ψ(x, y) for x < 0, (2.14)

ψ(x, y + β) = e2πiλ̃ ψ(x, y) for x > 0, (2.15)

where λ̃ = λ0 + λ1.
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• It satisfies the normalization condition

lim
|z|→0

(mz/2)1−λ1ψ1(x, y) = 1

�(λ1)
, (2.16)

where the fractional power of z is defined as

z1−λ1 = e(1−λ1) ln z, 0 < Im(ln z) < 2π.

Theorem 2.1 shows that these requirements determine the solution uniquely.
The function e−2πiλ0y/βψ is periodic in the left halfplane and therefore can be ex-

panded there in Fourier series. Substituting the series into Dirac equation, one obtains a
general form of the solution for x < 0,

ψx<0(x, y) = −A
∑

n∈Z+λ0

G(θn)

mβ cosh θn
emx cosh θn+imy sinh θn

(
eθn

1

)

, (2.17)

where sinh θn = 2π
mβ
n and the factor 1/(mβ cosh θn) is introduced for further conve-

nience. Analogously, the general form of the solution in the right halfplane is

ψx>0(x, y) = A
∑

n∈Z−λ̃

H (θn)

mβ cosh θn
e−mx cosh θn−imy sinh θn

(−eθn
1

)

. (2.18)

Of course, in order for the series (2.17) and (2.18) to converge the functions G(θ)
and H(θ) have to not grow too rapidly as θ → ±∞. Moreover, we shall assume that
G(θ) and H(θ) are analytic in the strip −π

2 − δ < Im θ < π
2 + δ for some δ > 0, so

that (2.17) and (2.18) can be represented via contour integrals (see Fig. 3)

ψx<0(x, y) = A

∫

C−
⋃
C+

dθ

2π

G(θ)

1 − eimβ sinh θ−2πiλ0
emx cosh θ+imy sinh θ

(
eθ

1

)

,

ψx>0(x, y) = A

∫

C−
⋃
C+

dθ

2π

H(θ)

1 − e−imβ sinh θ−2πiλ̃
e−mx cosh θ−imy sinh θ

(−eθ
1

)

.
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If 0 < y < β, the contours C+ and C− can be continuously deformed into Im θ = π
2

and Im θ = −π
2 , respectively, defining the continuations of ψx<0(x, y) and ψx>0(x, y)

on the whole strip

ψx<0(x, y) = A

∞∫

−∞

dθ

2π

{

−G(θ + iπ/2)eimx sinh θ−my cosh θ

1 − e−mβ cosh θ−2πiλ0

(
ieθ

1

)

+G(θ − iπ/2)e−imx sinh θ+my cosh θ

1 − emβ cosh θ−2πiλ0

(−ieθ
1

)}

,

ψx>0(x, y) = A

∞∫

−∞

dθ

2π

{

−H(θ + iπ/2)e−imx sinh θ+my cosh θ

1 − emβ cosh θ−2πiλ̃

(−ieθ
1

)

+H(θ − iπ/2)eimx sinh θ−my cosh θ

1 − e−mβ cosh θ−2πiλ̃

(
ieθ

1

)}

.

These continuations coincide if two functional relations for G(θ) and H(θ) hold:

G(θ + iπ/2)

H(θ − iπ/2)
= − 1 − e−mβ cosh θ−2πiλ0

1 − e−mβ cosh θ−2πiλ̃
, (2.19)

G(θ − iπ/2)

H(θ + iπ/2)
= −e2πiλ1

1 − e−mβ cosh θ+2πiλ0

1 − e−mβ cosh θ+2πiλ̃
. (2.20)

The relevant solutions of these equations can be found using the following lemma.

Lemma 2.2. Consider two functions, f (θ) and g(θ), that are analytic in the strip

|Im θ | < δ. If in this strip |f (θ)| = O
(

1
|Re θ |2

)
and |g(θ)| = O(1) as Re θ → ±∞,

then the functions

ν(θ) =
∞∫

−∞

dθ ′

2π
tanh(θ ′ − θ)f (θ ′), η(θ) =

∞∫

−∞

dθ ′

2π
sech (θ ′ − θ)g(θ ′), θ ∈ R

(2.21)

can be analytically continued to the strip |Im θ | < π
2 + δ. Furthermore, if |Im θ | < δ,

these continuations satisfy the relations

ν
(
θ + iπ

2

)
− ν

(
θ − iπ

2

)
= −if (θ), η

(
θ + iπ

2

)
+ η

(
θ − iπ

2

)
= g(θ).

(2.22)
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� Obviously, the expressions (2.21) for ν(θ) and η(θ) are analytic functions in the strip
|Im θ | < π

2 . Their analytic continuations to |Im θ | < π
2 + δ are

ν(θ)

∣
∣
∣
Im θ=± π

2

= ∓ i

2
f (θ ∓ iπ

2
)+ P

∞∫

−∞

dθ ′

2π
coth

(
θ ′ − θ ± iπ

2

)
f (θ ′),

η(θ)

∣
∣
∣
Im θ=± π

2

= 1

2
g(θ ∓ iπ

2
)± i P

∞∫

−∞

dθ ′

2π
csch

(
θ ′ − θ ± iπ

2

)
g(θ ′),

ν(θ)

∣
∣
∣
π
2 <Im θ<π

2 +δ
= −if

(
θ − iπ

2

)
+

∞∫

−∞

dθ ′

2π
tanh(θ ′ − θ)f (θ ′),

η(θ)

∣
∣
∣
π
2 <Im θ<π

2 +δ
= g

(
θ − iπ

2

)
+

∞∫

−∞

dθ ′

2π
sech(θ ′ − θ)g(θ ′),

ν(θ)

∣
∣
∣− π

2 −δ<Im θ<− π
2

= if
(
θ + iπ

2

)
+

∞∫

−∞

dθ ′

2π
tanh(θ ′ − θ)f (θ ′),

η(θ)

∣
∣
∣− π

2 −δ<Im θ<− π
2

= g
(
θ + iπ

2

)
+

∞∫

−∞

dθ ′

2π
sech(θ ′ − θ)g(θ ′),

where the first two integrals are understood in the principal value sense. Then the state-
ment of the lemma follows immediately. ��

If we write the functions G(θ) and H(θ) in the form

{
G(θ) = − exp

(
πiλ1 − λ1θ + i

2 ν(θ)+ 1
2η(θ)

)
,

H(θ) = exp
(−λ1θ + i

2 ν(θ)− 1
2η(θ)

)
,

(2.23)

the functional relations (2.19) and (2.20) reduce to (2.22) with a particular choice of the
functions f (θ) and g(θ):

f (θ) = ln
1 − e−mβ cosh θ−2πiλ0

1 − e−mβ cosh θ+2πiλ0
− ln

1 − e−mβ cosh θ−2πiλ̃

1 − e−mβ cosh θ+2πiλ̃
, (2.24)

g(θ) = ln
(1 − e−mβ cosh θ+2πiλ0)(1 − e−mβ cosh θ−2πiλ0)

(1 − e−mβ cosh θ+2πiλ̃ )(1 − e−mβ cosh θ−2πiλ̃ )
. (2.25)

The branches of logarithms in (2.24) and (2.25) are fixed so that for real θ their imaginary
parts lie in the interval (−π;π).

The formulae (2.17), (2.18), (2.21) and (2.23)–(2.25) provide a solution to the Dirac
equation on the 1-punctured cylinder with specified branching (one should go back and
check that all formal manipulations we have made with functionsG(θ) andH(θ) indeed
can be done). It remains only to verify the normalization condition (2.16).
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Let us take, say, the expansion (2.18) and rewrite it using the Poisson summation
formula:

ψx>0(x, y) = A
∑

k∈Z

∞∫

−∞

dθ

2π
H(θ) e−mx cosh θ−im(y+kβ) sinh θ−2πikλ̃

(−eθ
1

)

.

The asymptotics of ψ for |z| → 0 is determined by the term with k = 0. Since λ1 > 0,
the main contribution to the corresponding integral is due to large |θ |. Straightforward
calculation shows that for |z| → 0,

ψ1(x, y) ∼ − A

2π
e−πiλ1/2+iν∞/2�(1 − λ1)(mz/2)

λ1−1,

where

ν∞ = lim
θ→+∞

ν(θ)

= − 1

2π

∞∫

−∞
dθ

(

ln
1 − e−mβ cosh θ−2πiλ0

1 − e−mβ cosh θ+2πiλ0
− ln

1 − e−mβ cosh θ−2πiλ̃

1 − e−mβ cosh θ+2πiλ̃

)

. (2.26)

Therefore, the solution we have constructed differs from the element of the canonical
basis only by a constant factor which can be set to unity by the appropriate choice of A.
Summarizing all these results, we obtain

Theorem 2.3. The element of canonical basis on the cylinder with one branchpoint is
given by the following expressions:

w(x, y) = A
∑

n∈Z+λ0

eπiλ1+ i
2 ν(θn)+ 1

2 η(θn)

mβ cosh θn
e−λ1θn+mx cosh θn+imy sinh θn

(
eθn

1

)

for x < 0,

w(x, y) = A
∑

n∈Z−λ̃

e
i
2 ν(θn)− 1

2 η(θn)

mβ cosh θn
e−λ1θn−mx cosh θn−imy sinh θn

(−eθn
1

)

for x > 0,

where the functions ν(θ), η(θ) are determined from

ν(θ) =
∞∫

−∞

dθ ′

2π
tanh(θ ′ − θ)

(

ln
1 − e−mβ cosh θ ′−2πiλ0

1 − e−mβ cosh θ ′+2πiλ0
− ln

1 − e−mβ cosh θ ′−2πiλ̃

1 − e−mβ cosh θ ′+2πiλ̃

)

,

η(θ) =
∞∫

−∞

dθ ′

2π
sech (θ ′ − θ) ln

(1 − e−mβ cosh θ ′+2πiλ0)(1 − e−mβ cosh θ ′−2πiλ0)

(1 − e−mβ cosh θ ′+2πiλ̃ )(1 − e−mβ cosh θ ′−2πiλ̃ )
,

and normalization constant A = −2 sin πλ1 e
−iν∞/2.
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3. Green Function for the Dirac Operator

3.1. Green function for n = 0. Let us calculate the Green function on the cylinder
without branchpoints. The domain of the Dirac operator in this case consists of quasi-
periodic functions ψ(x, y + β) = e2πiλ0ψ(x, y) that are square integrable in the strip
S = {(x, y) : 0 < y < β}. After Fourier transformation

ψ̂(ξx, ξy) = 1

(2π)2

∞∫

−∞
dx

β∫

0

dy ψ(x, y) e−i(xξx+yξy), ξx ∈ R, ξy ∈ 2π

β
(Z + λ0)

the Dirac operator and its inverse are represented by matrices

D = 1

2

(
m −iξ̄

−iξ m

)

, D−1 = 2

m2 + |ξ |2
(
m iξ̄

iξ m

)

,

where ξ = ξx + iξy , ξ̄ = ξx − ξy . Since the inverse transformation is given by

ψ(x, y) = 2π

β

∑

ξy

∞∫

−∞
dξx ψ̂(ξx, ξy) e

i(xξx+yξy),

one obtains the following formula for the Green function G0(x − x′, y − y′) :

G0(x, y) = 1

πβ

∑

ξy

∞∫

−∞
dξx

(
m iξ̄

iξ m

)
ei(xξx+yξy)

m2 + |ξ |2 . (3.1)

Another two representations of the Green function will be useful for us. Choose, for
example, x > 0 and calculate the integrals in (3.1):

G0(x, y) =
∑

n∈Z−λ0

e−mx cosh θn−imy sinh θn

β cosh θn

(
1 −eθn

−e−θn 1

)

(3.2)

= m

∫

C−∪C+

dθ

2π

e−mx cosh θ−imy sinh θ

1 − e−imβ sinh θ−2πiλ0

(
1 −eθ

−e−θ 1

)

. (3.3)

Analogously, for x < 0 one obtains

G0(x, y) =
∑

n∈Z+λ0

emx cosh θn+imy sinh θn

β cosh θn

(
1 eθn

e−θn 1

)

(3.4)

= −m
∫

C−∪C+

dθ

2π

emx cosh θ+imy sinh θ

1 − eimβ sinh θ−2πiλ0

(
1 eθ

e−θ 1

)

. (3.5)

In what follows, we shall also need the asymptotics of these expressions as x, y → 0.
To find it, let us rewrite (3.1) using the Poisson formula:

G0(x, y) = 1

2π2

∑

k∈Z

∞∫

−∞

∞∫

−∞
dξxdξy

(
m iξ̄

iξ m

)
ei(xξx+yξy)+ik(βξy−2πλ0)

m2 + |ξ |2 . (3.6)
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The leading term of asymptotics is determined by the integral corresponding to k = 0,
representing the Green function on the plane. A little calculation shows that as |z| → 0,

G0(x, y) ∼ −m
π

(
ln |z| 1/z
1/z̄ ln |z|

)

.

It is very convenient to write the Green function as

G0(z) = 2G(z)J, J =
(

0 i

−i 0

)

,

since the rows of G(z) satisfy the Dirac equation (and not its adjoint, as the rows of
G0(z) do).

3.2. General properties of Green function. The domain Da,λ of the Dirac operatorDa,λ

is chosen to consist of functions ψ that have monodromies e2πiλν (ν = 0, . . . , n) and
are integrable at |x| → ∞. We also require (see (2.6))

(
(z− aν)

−λν 0
0 (z̄− āν)

λν

)

ψ[aν] ∈ H 1[aν], ν = 1, . . . , n, (3.7)

where H 1[aν] denotes the space of functions that are square integrable in the neigh-
borhood of {aν} together with their first derivatives. In the previous section we have
shown that the Dirac equation Da,λψ = 0 has no solutions in Da,λ. Thus “naively” we
can think of Da,λ as being an invertible operator. The kernel of the inverse is called the
Green function Ga,λ. More precisely, the solution of

Da,λψ = ϕ,

is assumed to have the form

ψ(z) =
∫

C\b
Ga,λ(z, z′)J ϕ(z′) idz′ ∧ dz̄′. (3.8)

Then one can try to determine the Green function by the following requirements:

• The columns of Ga,λ(z, z′) must satisfy Dirac equation DzG
a,λ
·,j (z, z

′) = 0 for all
z ∈ C\(b ∪ {z′}); they are square integrable functions at |x| → ∞ that have mo-
nodromy e2πiλν (ν = 0, . . . , n) and singular behaviour (3.7) at each singularity.
Therefore,

G
a,λ
·,j (z, z

′)[aν] =
∑

k>0

{
a
(ν)
k,j (z

′)wk+λν [aν] + b
(ν)
k,j (z

′)w ∗
k−λν [aν]

}
. (3.9)

• The integral operator with the kernel Da,λz Ga,λ(z, z′) has to “cut out” the values
of the function ϕ(z). Therefore, the singular behaviour of Ga,λ(z, z′) for z → z′
must coincide with that of Green function for the Dirac operator on the cylinder
without branchpoints,

Ga,λ(z, z′)−G(z, z′) ∈ C1(z → z′). (3.10)
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Remark. Suppose the function defined by these conditions exists. Then it is unique,
since the columns of the difference of two such functions are obviously in W̃a,λ.

Next we determine how Ga,λ(z, z′) depends on the second argument. To do this, let
us define a matrix Fa,λ(z, z′) satisfying the following conditions:

• The rows of Fa,λ(z, z′) satisfy Dirac equation Dz′G
a,λ
j,· (z, z

′) = 0 for all z′ ∈
C\(b ∪ {z}); they are square integrable functions at |x| → ∞, have the inverse
monodromy e−2πiλν (ν = 0, . . . , n) and corresponding singular behaviour (3.7)
at the branching points:

F
a,λ
j,· (z, z

′)[aν] =
∑

k>0

{
α
(ν)
k,j (z)wk−λν [aν] + β

(ν)
k,j (z)w

∗
k+λν [aν]

}
. (3.11)

• The singular behaviour of Fa,λ(z, z′) for z′ → z coincides with the asymptotics
of “unperturbed” Green function,

Fa,λ(z, z′)−G(z, z′) ∈ C1(z′ → z). (3.12)

Skipping the proof of existence of Ga,λ(z, z′) (or Fa,λ(z, z′)) we shall now prove the
following

Theorem 3.1. Ga,λ(z, z′) = Fa,λ(z, z′).

� First we note an auxiliary relation: if f (z) and g(z) are smooth functions on some
open set U ⊂ C, then

{Df · Jg − f · JDg} dz ∧ dz̄ = {
∂z(f2g2)− ∂z̄(f1g1)

}
dz ∧ dz̄

= d(f1g1dz+ f2g2dz̄). (3.13)

Now choose two distinct points x, y /∈ b and

{
f (z) = F

a,λ
i,· (x, z),

g(z) = G
a,λ
·,j (z, y),

with U being the complement to the union of the disks

(
n⋃

ν=1
Dε(aν)

)

∪Dε(x)∪Dε(y)
and two strips: S′

ε = {(x, y) : 0 ≤ y < ε} and S′′
ε = {(x, y) : β − ε < y ≤ β}.

Integrating (3.13) over this set and using Stokes theorem, one obtains

0 =
n∑

ν=1

∮

∂Dε(aν)

(f1g1dz+ f2g2dz̄)+
∮

∂Dε(x)∪∂Dε(y)
(f1g1dz+ f2g2dz̄)

+
∮

∂S′
ε∪∂S′′

ε

(f1g1dz+ f2g2dz̄) .

The expression under the integrals is single-valued on C\a, so in the limit ε → 0 the
last integral cancels out. The integrals over ∂Dε(aν) also vanish. One can easily check
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this, substituting instead of Ga,λ·,j (z, y) and Fa,λi,· (x, z) their local expansions (3.9) and
(3.11). It remains to calculate

lim
ε→0

{ ∮

∂Dε(x)

F
a,λ
i,1 (x, z)G

a,λ
1,j (z, y)dz+

∮

∂Dε(x)

F
a,λ
i,2 (x, z)G

a,λ
2,j (z, y)dz̄

}

= i

2π

{
−2πiδi1G

a,λ
1,j (x, y)− 2πiδi2G

a,λ
2,j (x, y)

}
= G

a,λ
i,j (x, y),

and, similarly,

lim
ε→0

{ ∮

∂Dε(y)

F
a,λ
i,1 (x, z)G

a,λ
1,j (z, y)dz+

∮

∂Dε(y)

F
a,λ
i,2 (x, z)G

a,λ
2,j (z, y)dz̄

}

= −Fa,λi,j (x, y).

Finally we get Ga,λi,j (x, y) = F
a,λ
i,j (x, y). ��

Remark. Since the columns and rows of Ga,λ(z, z′) satisfy Dirac equation in z and
z′ respectively, so do also the derivatives of the Green function ∂aµG

a,λ(z, z′) and
∂āµG

a,λ(z, z′). These derivatives are not singular at z → z′. However, their local expan-
sions are more singular than (3.9) or (3.11); from the relations

{
∂zwl = m

2 wl−1,

∂z̄wl = m
2 wl+1,

{
∂zw

∗
l = m

2 w
∗
l+1,

∂z̄w
∗
l = m

2 w
∗
l−1,

it follows that

∂aµG
a,λ
j,· (z, z

′)[aν] = −m
2
δµνα

(ν)
1/2,j (z)w−1/2−λν

+
∑

k>0

{
γ
(ν)
k,j (z)wk−λν + γ̃

(ν)
k,j (z)w

∗
k+λν

}
, (3.14)

∂āµG
a,λ
j,· (z, z

′)[aν] = −m
2
δµνβ

(ν)
1/2,j (z)w

∗
−1/2+λν

+
∑

k>0

{
η
(ν)
k,j (z)wk−λν + η̃

(ν)
k,j (z)w

∗
k+λν

}
. (3.15)

Therefore, if we somehow determine the coefficients α (ν)1/2,j (z), β
(ν)

1/2,j (z) and find the
solution of Dirac equation with the same “extra” singular behaviour, it will coincide
with the corresponding derivative of Green function.

Let us consider a multivalued solution f (z) to the Dirac equation in the strip S =
{(x, y) : 0 < y < β}, which is square integrable at |x| → ∞ and has the following
local expansions about the branchpoints aν (there are no other singularities!)

f (z′)[aν] =
∑

k

{
a
(ν)
k wk−λν + b

(ν)
k w ∗

k+λν
}
.

In addition, only a finite number of coefficients a(ν)k , b(ν)k with k < 0 is allowed to
have non-zero values. Lower and upper continuations of f (z) across the branchcut dν
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(ν = 0, . . . , n) are supposed to differ by monodromy multiplier exp
(
2πi

ν∑

k=0
λk
)
, so

that the product Ga,λj,· (z, z
′)f (z′), as the function of z′, is single-valued on C\a. Using

(2.9) and Stokes theorem, one obtains

m

2

∫

C\⋃
ν
Dε(aν)

G
a,λ
j,· (z, z

′)f (z′)idz′ ∧ dz̄′ (3.16)

= −
∑

ν

∮

∂Dε(aν)

G
a,λ
j,2 (z, z

′)f1(z′)idz̄′ −
∮

∂Dε(z)

G
a,λ
j,2 (z, z

′)f1(z′)idz̄′ (3.17)

=
∑

ν

∮

∂Dε(aν)

G
a,λ
j,1 (z, z

′)f2(z′)idz′ +
∮

∂Dε(z)

G
a,λ
j,1 (z, z

′)f2(z′)idz′. (3.18)

The surface integral (3.16) does not converge for ε → 0. However, one can still compare
the asymptotics of (3.17) and (3.18) for ε → 0:

lim
ε→0

(3.17) = − 4

m

∑

ν

∑

k>0

(−1)k+1/2 sin πλν β
(ν)
k,j (z)a

(ν)
−k − iδj2f1(z),

lim
ε→0

(3.18) = 4

m

∑

ν

∑

k>0

(−1)k+1/2 sin πλν α
(ν)
k,j (z)b

(ν)
−k + iδj1f2(z).

Finally we get

∑

ν

∑

k>0

(−1)k+1/2 sin πλν

{

β
(ν)
k,j (z)a

(ν)
−k + α

(ν)
k,j (z)b

(ν)
−k

}

= − im
4

(
δj2f1(z)+ δj1f2(z)

)
.

(3.19)

Now we shall make a special choice of f (z′) to find the lowest coefficients of the Green
function expansions. Analogously to the previous section (see (2.12)), let us introduce
n special multivalued solutions to Dirac equation, that are integrable at |x| → ∞ and
have local expansions

w̃µ(λ)[aν] = δµνw−1/2+λν [aν]

+
∑

k>0

{
a
(ν)
k (w̃µ(λ))wk+λν [aν] + b

(ν)
k (w̃µ(λ))w∗

k−λν [aν]
}
. (3.20)

The existence and uniqueness of such solutions follow from the existence of canonical
basis; two bases coincide if all λν > 0.

After the substitution f (z) = w̃µ(−λ) in (3.19) one obtains

(
β
(µ)

1/2,1(z)

β
(µ)

1/2,2(z)

)

= im

4 sin πλµ

(
w̃µ2(z,−λ)
w̃µ1(z,−λ)

)

= im

4 sin πλµ
w̃∗
µ(z,−λ). (3.21)
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On the other hand, the substitution f (z) = w̃∗
µ(z, λ) in (3.19) gives a formula for

α
(µ)

1/2,j (z),

(
α
(µ)

1/2,1(z)

α
(µ)

1/2,2(z)

)

= im

4 sin πλµ
w̃µ(z, λ). (3.22)

Taking into account the earlier remarks (the formulae (3.14) and (3.15)), we obtain an
expression for the derivatives of the Green function in terms of the solutions (3.20):

∂ajG
a,λ(z, z′) = − im2

8 sin πλj
w̃j (z, λ)⊗ w̃j (z′,−λ), (3.23)

∂āj G
a,λ(z, z′) = − im2

8 sin πλj
w̃∗
j (z,−λ)⊗ w̃∗

j (z
′, λ). (3.24)

3.3. One-point Green function. The formulae (3.23) and (3.24) can be used to calculate
the Green function Ga,λ on the cylinder with one branching point {a}. Notice that in
the case of a single puncture the solutions (3.20) are easily expressed via the element of
canonical basis. If we suppose for definiteness that 0 < λ1 <

1
2 then w̃(z, λ) = w(z, λ).

Differentiating the local expansions, one can also verify that

w̃(z,−λ) = 2

m
∂zw(z, 1 − λ).

Let us determine Ga,λ(z, z′) if both z, z′ ∈ C\b are in the left half-strip: Re z,Re z′ <
Re a. Using the results of the previous section, one can write

w̃(z, λ) = −A(λ)
∑

l∈Z+λ0

G(θl; λ)e m2 (z−a)eθl+m
2 (z̄−ā)e−θl

mβ cosh θl

(
eθl

1

)

, (3.25)

w̃(z,−λ) = −A(1−λ)
∑

n∈Z−λ0

G(θn; 1−λ)eθn+m
2 (z−a)eθn+m

2 (z̄−ā)e−θn

mβ cosh θn

(
eθn

1

)

. (3.26)

Note the simple relations

A(λ)A(1 − λ) = 4 sin2 πλ1,

ν(θ; λ) = −ν(θ; 1 − λ) = −ν(θ; −λ), (3.27)

η(θ; λ) = η(θ; 1 − λ) = η(θ; −λ).
If we substitute (3.25) and (3.26) into Eqs. (3.23), (3.24) and then integrate them, we
obtain the following formula for Green function Ga,λ(z, z′):

Ga,λ(z, z′) = i sin πλ1

∑

l∈Z+λ0

∑

n∈Z−λ0

G(θl; λ)G(θn; 1 − λ)eθn

mβ2 cosh θl cosh θn

×e
m
2 {(z−a)eθl+(z̄−ā)e−θl+(z′−a)eθn+(z̄′−ā)e−θn }

eθl + eθn

(
eθl+θn eθl
eθn 1

)

+ C(z, z′).

(3.28)
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The function C(z, z′) does not depend on the position of the branching point and has to
be determined. We remark that the double sum in the RHS of the last relation converges
even if z = z′. This gives a hint that C(z, z′) should be equal to “unperturbed” Green
function G(z − z′; λ0). Assuming this is indeed the case, let us fix a = 0 and rewrite
(3.28) via contour integrals

G0,λ(z, z′) = im sin πλ1

∫

C−∪C+

dθ

2π

∫

C−∪C+

dθ ′

2π

G(θ; λ)G(θ ′; 1 − λ)eθ
′

(1 − eimβ sinh θ−2πiλ0)(1 − eimβ sinh θ ′+2πiλ0)

×e
m
2 {zeθ+z̄e−θ+z′eθ ′+z̄′e−θ ′ }

eθ + eθ
′

(
eθ+θ ′

eθ

eθ
′

1

)

+G(z− z′; λ0). (3.29)

Analogously, if Re z,Re z′ > 0, the Green function G0,λ(z, z′) is assumed to have the
following form:

G0,λ(z, z′) = im sin πλ1

∫

C−∪C+

dθ

2π

∫

C−∪C+

dθ ′

2π

H(θ; λ)H(θ ′; 1 − λ)eθ
′

(1 − e−imβ sinh θ−2πiλ̃)(1 − e−imβ sinh θ ′+2πiλ̃)

×e
−m

2 {zeθ+z̄e−θ+z′eθ ′+z̄′e−θ ′ }

eθ + eθ
′

(
eθ+θ ′ −eθ
−eθ ′

1

)

+G(z− z′; λ̃). (3.30)

In order to prove that the formulae (3.29) and (3.30) indeed represent the Green function,
we shall construct their continuations to arbitrary values z, z′ ∈ C\b, and show that these
continuations coincide with each other.

Let us start, say, from the representation (3.29). At the first stage, we construct its
continuation to arbitrary values of z only. This can be done by shifting the contours C−
andC+ in the integral over θ to Im θ = −π

2 , Im θ = π
2 respectively. After this procedure

one obtains

G0,λ(z, z′)−G(z− z′; λ0)

= im sin πλ1

∞∫

−∞

dθ

2π

∫

C−∪C+

dθ ′

2π

G(θ ′; 1 − λ)eθ
′+mx′ cosh θ ′+imy′ sinh θ ′

1 − eimβ sinh θ ′+2πiλ0

×
{
G(θ − iπ/2; λ)e−imx sinh θ+my cosh θ

(1 − emβ cosh θ−2πiλ0)(−ieθ + eθ
′
)

(−ieθ+θ ′ −ieθ
eθ

′
1

)

−G(θ + iπ/2; λ)eimx sinh θ−my cosh θ

(1 − e−mβ cosh θ−2πiλ0)(ieθ + eθ
′
)

(
ieθ+θ ′

ieθ

eθ
′

1

)}

.

We cannot do the same thing the second time, since the function standing in the integral
over θ ′ has the poles θ ′ = θ ± iπ

2 . However, one can shift C− and C+ to the contours

C
ε,θ
− and Cε,θ+ shown in Fig. 4, and then let ε → 0. The continuation of (3.29) to all
z, z′ ∈ C\b is then
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G0,λ(z, z′) = im sin πλ1

∑

σ=±1

∞∫

−∞

dθ

2π

∞∫

−∞

dθ ′

2π

× G(θ + iσπ
2 ; λ)G(θ ′ + iσπ

2 ; 1 − λ)eθ
′

(1 − e−σmβ cosh θ−2πiλ0)(1 − e−σmβ cosh θ ′+2πiλ0)

×e
σm(ix sinh θ−y cosh θ+ix′ sinh θ ′−y′ cosh θ ′)

eθ + eθ
′

(−eθ+θ ′
σ ieθ

σ ieθ
′

1

)

−im sin πλ1

∑

σ=±1

∞∫

−∞

× dθ
2π

P

∞∫

−∞

dθ ′

2π

G(θ + iσπ
2 ; λ)G(θ ′ − iσπ

2 ; 1 − λ)eθ
′

(1 − e−σmβ cosh θ−2πiλ0)(1 − eσmβ cosh θ ′+2πiλ0)

×e
σm(ix sinh θ−y cosh θ−ix′ sinh θ ′+y′ cosh θ ′)

eθ
′ − eθ

(
eθ+θ ′

σ ieθ

−σ ieθ ′
1

)

+1

2

{
G(z− z′; λ0)+G(z− z′; λ̃)

}
. (3.31)

The last two terms are “pole contributions” that can be calculated using (3.27) and
contour representations of the Green function on the cylinder without branchpoints.

If we perform the same manipulations with the representation (3.30) in the right
half-strip, the final expression will coincide with (3.31) due to the relations (2.19) and
(2.20) satisfied by the functionsG(θ) andH(θ). Thus the formulae (3.29)–(3.31) indeed
define the Green function G0,λ(z, z′).

4. Tau Functions

In this section we study the spaces of boundary values of some local solutions to the Di-
rac equation. These spaces can be embedded into an infinite-dimensional grassmannian.

Im

Re θ

π/2

−π/2

0

C+

C–

θ

ε,θ

ε,θ

2ε

2ε

θ

Fig. 4
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The τ -functions are determined via the trivialization of the det∗-bundle over this grass-
mannian.

4.1. Subspaces Wint (a) and Wext (a). Let us consider a circle Lx0 = {(x, y)∈C : x =
x0}, and denote by H 1/2

λ (Lx0) the space of C
2-valued quasiperiodic functions on Lx0 .

Namely, if g ∈ H
1/2
λ (Lx0), then g(y + β) = e2πiλg(y). After Fourier transform the

function g can be written as

g(y) = 2π

β

∑

n∈Z+λ
ĝ(θn)e

imy sinh θn , sinh θn = 2π

mβ
n.

Let us introduce two operators,Q+ andQ−, acting onH 1/2
λ (Lx0) in the following way:

Q±g(y) = 2π

β

∑

n∈Z+λ
Q±(θn)ĝ(θn)eimy sinh θn ,

Q+(θ) = 1

2 cosh θ

(
eθ 1
1 e−θ

)

, Q−(θ) = 1

2 cosh θ

(
e−θ −1
−1 eθ

)

.

These operators have the properties of projectors,

Q+ +Q− = 1, Q2
+ = Q+, Q2

− = Q−,

and thus define the splitting H 1/2
λ (Lx0) = H+

λ ⊕H−
λ , with H±

λ = Q±H
1/2
λ (Lx0). One

may easily verify that

∑

n∈Z+λ
‖Q±(θn)ĝ(θn)‖2 cosh θn = 1

2

∑

n∈Z+λ
|g±(θn)|2,

where

(
g+(θn)
g−(θn)

)

=
(

v
1/2
n v

−1/2
n

−v−1/2
n v

1/2
n

)(
ĝ1(θn)

ĝ2(θn)

)

, vn ≡ v(θn) = eθn .

Therefore, the function g is expressed through its polarization components g±(θn) as

g(y) = 2π

β

∑

n∈Z+λ

eimy sinh θn

2 cosh θn

(
v

1/2
n −v−1/2

n

v
−1/2
n v

1/2
n

)(
g+(θn)
g−(θn)

)

. (4.1)

Let us now show that the elements ofH−
λ (H+

λ ) represent the boundary values of qua-
siperiodic solutions to the Dirac equation in the right (left) half-strip x > x0 (x < x0).
To do this, rewrite the Dirac equation in the form

∂xψ =
(−i∂y m

m i∂y

)

ψ. (4.2)
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If we put the initial conditionψ(x0, y) = g(x0, y)with g(x0, y) ∈ H−
λ (i.e. all g+(θn) =

0), the solution of (4.2) in the right half-strip is

ψx>x0 = 2π

β

∑

n∈Z+λ

eimy sinh θn−m(x−x0) cosh θn

2 cosh θn

(
v

1/2
n −v−1/2

n

v
−1/2
n v

1/2
n

)(
0

g−(θn)

)

.

The convergence of this series is guaranteed by its convergence for x = x0. The solu-
tion of (4.2) in the left half-strip can be constructed from the element ofH+

λ in a similar
fashion.

The Green function G(z − z′; λ) on the cylinder without branchpoints provides a
useful formula for the projections Q±.

Proposition 4.1. Consider the map Q : H 1/2
λ (Lx0) → H 1

λ (C\Lx0), defined by

(Qg)(z) = i

∫

Lx0

G(z− z′; λ) σz g(y′)dy′, σz =
(

1 0
0 −1

)

, g ∈ H 1/2
λ (Lx0).

(4.3)

Then the boundary values on Lx0 of the restrictions of (Qg)(z) to the left and right
half-strip are equal to Q+g and −Q−g respectively.

� To prove the proposition, one has only to substitute in (4.3) the Fourier expansion
(4.1) of g and the representations (3.2) and (3.4) of the Green function. ��

Suppose no two branchpoints have the same first coordinate. Then one can isolate the

branchcuts b1, . . . , bn in the open strips S1, . . . , Sn (Fig. 5). The union
n⋃

j=1
Sj will be

denoted by S. Consider the subspace of H 1(C\S̄) consisting of functions ψ that satisfy
on C\S̄ the Dirac equation and appropriate quasiperiodicity conditions:

ψ(x, y + β) =






e2πiλ0ψ(x, y) for x < xL1 ,

exp{2πi
k∑

j=0
λj }ψ(x, y) for xRk < x < xLk+1,

exp{2πi
n∑

j=0
λj }ψ(x, y) for x > xRn .

We will denote byWext the space of boundary values of such functions. It is a subspace
of W , the space of all quasiperiodic C

2-valued H 1/2 functions on ∂S:

W = H
1/2
λ0
(LxL1

)⊕H
1/2
λ0+λ1

(LxR1
)⊕ · · · ⊕H

1/2∑n
k=0 λk

(LxRn
). (4.4)

Analogously,Wint ⊂ W is defined as the space of boundary values of functions g ∈ Da,λ

that solve Da,λg = 0 on S.
The construction of the infinite-dimensional grassmannian in the next subsection

heavily relies on the transversality of the subspaces Wext and Wint in W . We postpone
the proof of this fact; instead, let us explain how one can find the explicit formulae for
the projections on these subspaces. Consider the restriction g(i) = g

∣
∣
∂LSi∪∂RSi of an

element g ∈ W to the boundary of the strip Si . It is convenient to introduce the notation

g(i) =
(
g
(i)
R,+
g
(i)
L,−

)

⊕
(
g
(i)
R,−
g
(i)
L,+

)

.
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Example. Assume for a moment that the strip Si contains no branchcuts at all, i. e. both
g
(i)
L and g(i)R obey the same quasiperiodicity conditions, say,

g
(i)
L (y + β) = e2πiλg

(i)
L (y), g

(i)
R (y + β) = e2πiλg

(i)
R (y).

Then the map

Q̃g(i)(z) = i

∫

∂LSi∪∂RSi

G(z− z′; λ)σz g(i)(y′)dy′

=
∫

∂LSi∪∂RSi

G·,1(z− z′; λ)g(i)1 (z′)dz′ +G·,2(z− z′; λ)g(i)2 (z′)dz̄′ (4.5)

defines a function that satisfies the Dirac equation in Si .After a simple calculation involv-
ing Fourier representations of g(i) and of the Green function, one obtains the explicit
formula

Q̃g(i)(z) = 2π

β

∑

n∈Z+λ

em(x−x
R
i ) cosh θn+imy sinh θn

2 cosh θn

(
v

1/2
n −v−1/2

n

v
−1/2
n v

1/2
n

)(
g
(i)
R,+(θn)

0

)

+2π

β

∑

n∈Z+λ

e−m(x−x
L
i ) cosh θn+imy sinh θn

2 cosh θn

(
v

1/2
n −v−1/2

n

v
−1/2
n v

1/2
n

)(
0

g
(i)
L,−(θn)

)

.

Passing to boundary values, we see that Q̃ induces a map on W . It is given by

Q̃ :

(
g
(i)
R,+
g
(i)
L,−

)

⊕
(
g
(i)
R,−
g
(i)
L,+

)

�→
(
g
(i)
R,+
g
(i)
L,−

)

⊕
(

0 ω̂
ω̂ 0

)(
g
(i)
R,+
g
(i)
L,−

)

,

where (ω̂g)(θn) = e−m(x
R
i −xLi ) cosh θng(θn) in Fourier representation. Furthermore, Q̃

is a projection onto the space of solutions to the Dirac equation on Si . If g(i)L and g(i)R
represent boundary values of a function f that belongs to this space, the one-form in
(4.5) is closed, so the contour of integration can be shrunk to a small circle around z.
Using the asymptotics of the Green function at z′ → z, one obtains Q̃f (z) = f (z).
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The generalization of the example we have just considered to the strip containing a
branchcut leads to the main technical result of this subsection:

Theorem 4.2. Suppose that Ga,λ(z, z′) is the one-point Green function2 found in the
previous section. Suppose that a ∈ S′, S′ = {(x, y) ∈ C : xL < x < xR}. Consider the
function g on ∂S′, which satisfies g

∣
∣
∂LS′ ∈ H 1/2

λ0
(∂LS′), g

∣
∣
∂RS′ ∈ H 1/2

λ̃
(∂RS′). Then the

map

PS′(a)g(z) =
∫

∂LS′∪∂RS′

G
a,λ
·,1 (z, z

′)g1(z
′)dz′ +G

a,λ
·,2 (z, z

′)g2(z
′)dz̄′ (4.6)

defines a projection onto the space of functions f ∈ Da,λ that solve Da,λf = 0 on S′.
The induced map of boundary values is determined by the following formula:

PS′(a) :

(
gR,+
gL,−

)

⊕
(
gR,−
gL,+

)

�→
(
gR,+
gL,−

)

⊕
(
α̂ β̂

γ̂ δ̂

)(
gR,+
gL,−

)

, (4.7)

where

(α̂g)(θl) = 2 sin πλ1

β

∑

n∈Z+λ̃

(vlvn)
λ1+ 1

2

1 + vl vn

e−m(xR−ax)(cosh θl+cosh θn)−imay(sinh θl−sinh θn)

cosh θn

×e− i
2 (νl+νn)− 1

2 (ηl+ηn)g(θn), l ∈ Z + λ̃, (4.8)

(β̂g)(θl) = 2e−πiλ1 sin πλ1

β

∑

n∈Z+λ0

e−m(xR−ax) cosh θl+m(xL−ax) cosh θn−imay(sinh θl−sinh θn)

cosh θn

×v
λ1+ 1

2
l v

−λ1+ 1
2

n

vl − vn
e−

i
2 (νl−νn)− 1

2 (ηl−ηn)g(θn), l ∈ Z + λ̃, (4.9)

(γ̂ g)(θl) = −2eπiλ1 sin πλ1

β

∑

n∈Z+λ̃

em(xL−ax) cosh θl−m(xR−ax) cosh θn−imay(sinh θl−sinh θn)

cosh θn

×v
−λ1+ 1

2
l v

λ1+ 1
2

n

vl − vn
e
i
2 (νl−νn)+ 1

2 (ηl−ηn)g(θn), l ∈ Z + λ0, (4.10)

(δ̂g)(θl) = 2 sin πλ1

β

∑

n∈Z+λ0

(vlvn)
−λ1+ 1

2

1 + vl vn

em(xL−ax)(cosh θl+cosh θn)−imay(sinh θl−sinh θn)

cosh θn

×e i2 (νl+νn)+ 1
2 (ηl+ηn)g(θn), l ∈ Z + λ0, (4.11)

and νl = ν(θl; λ), ηl = η(θl; λ).
� The derivation of (4.2)–(4.11) can be carried out analogously to the previous exam-
ple, using two more (in addition to (3.28–3.30)) representations of the one-point Green
function:

2 Here a denotes a single point, and not the collection (a1, . . . , an). I hope this abuse of notation will
not confuse the reader.
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Ga,λ(z, z′) = i sin πλ1
∑

l∈Z+λ0

∑

n∈Z+λ̃

G(θl; λ)H(θn; 1 − λ)

mβ2 cosh θl cosh θn

eθn+m(x−ax) cosh θl+im(y−ay) sinh θl

eθl − eθn

×e−m(x′−ax) cosh θn−im(y′−ay) sinh θn
(−eθl+θn eθl

−eθn 1

)

for x < ax < x′, (4.12)

Ga,λ(z, z′) = i sin πλ1
∑

l∈Z+λ0

∑

n∈Z+λ̃

G(−θl; λ)H(−θn; 1 − λ)

mβ2 cosh θl cosh θn

e−θn−m(x−ax) cosh θl+im(y−ay) sinh θl

e−θl − e−θn

×em(x′−ax) cosh θn−im(y′−ay) sinh θn
(−e−θl−θn −e−θl

e−θn 1

)

for x > ax > x′. (4.13)

When one applies the Stokes theorem to prove the projection property, the contour of
integration in (4.6) can be deformed into two small circles, around z and a. Using the
expansions (2.7), (3.11) of the multivalued local solution to Dirac equation and Green
function, one easily shows that the second integral vanishes.

Remark. Let us choose in H 1/2
λ (L) a complete orthonormal family {ϕk}, say,

ϕk = 1√
β
eimy sinh θk , k ∈ Z + λ.

With these functions, we can find Schmidt norms of α̂, β̂, γ̂ , δ̂ and show that they are
finite. For example,

‖β̂‖ 2
2 =

∑

n,n′∈Z

|〈β̂ϕn+λ0 , ϕn′+λ̃〉|2 =
∑

l∈Z+λ̃

∑

n∈Z+λ0

|β̂(θl, θn)|2,

where β̂(θl, θn) denotes the “kernel” of β̂. This sum rapidly converges due to the expo-
nential factors e−m(xR−ax) cosh θl and em(xL−ax) cosh θn in β̂(θl, θn). Note, however, that in
the limit β → ∞, when α̂, β̂, γ̂ , δ̂ become integral operators, β̂ and γ̂ no longer belong
to the Schmidt class due to the singularities in the kernels.

We briefly outline the proof of the transversality of the subspaces Wint and Wext

in W , closely following Palmer’s work [10]. Suppose that f ∈ W is decomposed as
f = g + h, with g ∈ Wint and h ∈ Wext . Theorem 2.1 guarantees the uniqueness of
this decomposition, since the elements ofWint ∩Wext represent the boundary values of
the functions from W̃a,λ. It remains to prove only the existence.

In order for g to be in Wint , one should satisfy the conditions
(
g
(i)
R,−
g
(i)
L,+

)

=
(
α̂i β̂i

γ̂i δ̂i

)(
g
(i)
R,+
g
(i)
L,−

)

, (4.14)

where α̂i , β̂i , γ̂i , δ̂i are obtained from α̂, β̂, γ̂ , δ̂ by the substitution

xL → xLi , xR → xRi , a → ai, λ0 →
i−1∑

k=0

λk, λ̃ →
i∑

k=0

λk.

Another set of relations follows from the assumption that h ∈ Wext . Indeed, h(1)L should
represent the boundary value of a solution to Dirac equation in the left half-strip x < xL1 ;
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analogously, h(n)R is the boundary value of a solution in the half-strip x > xRn . This leads
to two relations,

h
(1)
L,− = 0, h

(n)
R,+ = 0. (4.15)

Next, the example we have considered shows that the functions h(i)R and h(i+1)
L are

boundary values of a solution in xRi < x < xLi+1, if

h
(i+1)
L,− = ω̂ih

(i)
R,−, h

(i)
R,+ = ω̂ih

(i+1)
L,+ , i = 1, . . . , n− 1, (4.16)

where ω̂i is obtained from ω̂ by the substitution

xLi → xRi , xRi → xLi+1, λ →
i∑

k=0

λk.

One can transform (4.15) and (4.16) into the conditions on g. Using (4.14) to eliminate
all g(i)R,− and g(i)L,+, we obtain a system of equations,

g
(i)
R,+−ω̂i

(
γ̂i+1g

(i+1)
R,+ +δ̂i+1g

(i+1)
L,−

)
=f (i)R,+−ω̂if (i+1)

L,+ , i=1, . . . , n− 1, (4.17)

g
(i+1)
L,− − ω̂i

(
α̂ig

(i)
R,+ + β̂ig

(i)
L,−

)
= f

(i+1)
L,− − ω̂if

(i)
R,−, i = 1, . . . , n− 1,(4.18)

g
(1)
L,− = f

(1)
L,−, g

(n)
R,+ = f

(n)
R,+. (4.19)

If we introduce the notation

Ui = −
(
ω̂i γ̂i+1 ω̂i δ̂i+1

0 0

)

, Vi = −
(

0 0
ω̂i α̂i ω̂i β̂i

)

, i = 1, . . . , n− 1,

g̃j =
(
g
(j)
R,+
g
(j)
L,−

)

, Fk =
(
f
(k)
R,+ − ω̂kf

(k+1)
L,+

f
(k)
L,− − ω̂k−1f

(k−1)
R,−

)

, j = 1, . . . , n, k = 2, . . . , n− 1,

F1 =
(
f
(1)
R,+ − ω̂1f

(2)
L,+

f
(1)
L,−

)

, Fn =
(

f
(n)
R,+

f
(n)
L,− − ω̂n−1f

(n−1)
R,−

)

,

the system (4.17)–(4.19) can be rewritten as








1 U1 0 . 0
V1 1 U2 . 0
0 V2 1 . .

. . . . Un−1
0 0 . Vn−1 1















g̃1
.

.

.

g̃n








=








F1
.

.

.

Fn







. (4.20)

The operator, standing in the LHS of (4.20), represents a compact perturbation of the
identity, and thus is Fredholm of index zero. Since to every nontrivial element of its
kernel there corresponds a nontrivial element ofWint ∩Wext , the kernel should be zero.
Therefore, this operator is invertible and can be used to construct the decomposition
f = g + h explicitly.
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4.2. Grassmannian, det∗-bundle and its trivialization. First we introduce several impor-
tant definitions, following Segal and Wilson [18] (further details can be found in [14,
19]).

Definition 4.3. Suppose we have a complex Hilbert spaceH with a given decomposition
H = H+ ⊕H−. The GrassmannianGr(H) is a set of all closed subspaces V ⊂ H such
that

• the projection pr+ : V → H+ along H− is a Fredholm operator;
• the projection pr− : V → H− along H+ is a Hilbert-Schmidt operator.

The first requirement means that the codimension of V ∩H+ is finite in both V andH+.
The connected components of the Grassmannian are distinguished by the value of the
index of pr+. We shall work only with the component Gr0(H) that corresponds to zero
index.

Definition 4.4. The invertible linear map v : H+ → V is called an admissible frame
for the subspace V ∈ Gr0(H) if pr+ ◦ v : H+ → H+ is a trace class perturba-
tion of the identity. The fiber of the det∗-bundle over V consists of the equivalence
classes of pairs (v, α), where v is an admissible frame, α is a complex number and

(v1, α1) ∼ (v2, α2) if α1 = α2 det
(
v−1

2 v1

)
. The canonical section of the det∗-bundle

is given by σ : V �→ (
v, det (pr+ ◦ v)).

In the work of Segal and Wilson, as well as in almost all subsequent papers on the
subject, the Hilbert space H is the space of all square-integrable complex-valued func-
tions on the unit circle S1 = {z ∈ C : |z| = 1}.H+ andH− are spanned by the elements
{zk} with k ≥ 0 and k < 0, respectively.

We are interested in a more complicated model of the Grassmannian.H is identified
with the spaceW (see (4.4)) of square-integrable quasiperiodic C

2-valued functions on
the boundary ∂S. Let us fix a collection of points a0 = (a0

1 , . . . , a
0
n) such that a0

j ∈ Sj ,
j = 1, . . . , n. Then one can define the Grassmannian Gr(W) with respect to the split-
ting W = Wint (a

0)⊕Wext . The crucial observation, similar to one made by Palmer in
[10], is that Wint (a) ∈ Gr0(W).

Now introduce two admissible frames for the subspaceWint (a). The first one, which
will be denoted as P(a) : Wint (a

0) → Wint (a), represents the projection of Wint (a
0)

on Wint (a) along Wext . It is easy to guess that P(a) inverts pr+. Thus the canoni-
cal section can be written as σ : Wint (a) �→ (P (a), 1). The second admissible frame,
F(a) : Wint (a

0) → Wint (a), is the restriction toWint (a
0) of the direct sum of the appro-

priate one-point projections (4.6)–(4.7): F(a) = (
PS1(a1)⊕ · · · ⊕ PSn(an)

)∣∣
∣
Wint (a

0)
. It

defines a second, trivializing section ϑ : Wint (a) �→ (F (a), 1). The determinant of the
Dirac operator Da,λ, or the τ -function, is determined from the comparison of the two
sections,

τ(a, a0) = σ(Wint (a))

ϑ(Wint (a))
= det

(
P(a)−1F(a)

)
. (4.21)

Remark. This ideology originates from the work [9], where the isomonodromic τ -func-
tion, associated to a fuchsian system on CP

1, was interpreted as the determinant of a
Cauchy-Riemann operator, whose domain incorporates functions with specified branch-
ing.
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In order to calculate τ(a, a0) more explicitly, let us use several results and notations
from the previous subsection. Suppose that f ∈ Wint (a

0), g ∈ Wint (a), then

f (j) = f̃j ⊕Nj

(
a0
)
f̃j , g(j) = g̃j ⊕Nj(a) g̃j , Nj (a) =

(
α̂j (a) β̂j (a)

γ̂j (a) δ̂j (a)

)

.

(4.22)

The functions f and g can be represented by columns

f = (f̃1 . . . f̃n)
T , g = (g̃1 . . . g̃n)

T .

The map F(a) : Wint (a
0) → Wint (a) is given in these coordinates by the identity trans-

formation. To obtain the representation of P(a)−1, for each g ∈ Wint (a) one should find
a function f ∈ Wint (a

0) such that g = f − h with h ∈ Wext . This amounts to the same
calculation as we have done earlier in (4.15)–(4.20). Taking into account the additional
condition (4.22) on f , one finally obtains

(1 +M(a)) g =
(

1 +M(a0)
)
f,

where

M(a) =








0 U1(a) 0 . 0
V1(a) 0 U2(a) . 0

0 V2(a) 0 . .

. . . . Un−1(a)

0 0 . Vn−1(a) 0







.

Therefore, the τ -function is equal to

τ(a, a0) = det

{

(1 +M(a))
(

1 +M(a0)
)−1

}

. (4.23)

In fact, one can derive an even more convenient representation. Let us introduce the
matrix

M̃(a) =









0 Ũ1(a) 0 . 0
Ṽ1(a) 0 Ũ2(a) . 0

0 Ṽ2(a) 0 . .

. . . . Ũn−1(a)

0 0 . Ṽn−1(a) 0









with

Ũj =
(−ω̂j γ̂j+1 0

0 0

)

, Ṽj =
(

0 0
0 −ω̂j β̂j

)

, j = 1, . . . , n− 1.

The matrix 1 + M̃(a) is a product of an upper triangular and a lower triangular matrix
with identities on the diagonals. Thus we have

det

{(
1 + M̃(a0)

) (
1 + M̃(a)

)−1
}

= 1.
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Multiplying the RHS of (4.23) by this determinant, one finds

τ(a, a0) = det

{
(
1 + M̃(a)

)−1
(1 +M(a))

(
1 +M(a0)

)−1 (
1 + M̃(a0)

)
}

= τ(a)

τ (a0)
,

where

τ(a) = det
{(

1 + M̃(a)
)−1

(1 +M(a))
}
. (4.24)

Example. Consider the simplest nontrivial situation, when there are only two branching
points on the cylinder. Let us introduce the notation

λ̃ = λ0 + λ1, λ̄ = λ0 + λ1 + λ2, ax = (a2)x − (a1)x, ay = (a2)y − (a1)y.

In the case n = 2 the inverse matrix
(
1 + M̃(a)

)−1 looks particularly simple,

(
1 + M̃(a)

)−1 =
(

1 −Ũ1(a)

−Ṽ1(a) 1

)

.

Using this formula, one can find that the two-point τ -function is given by

τ(a) = det (1 −K) , (4.25)

where the operatorK = ω̂1α̂1ω̂1δ̂2 can be represented by the infinite-dimensional matrix
with the entries

Kmn = 4 sin πλ1 sin πλ2

β2

(vmvn)
λ1−λ2+1

2√
cosh θm cosh θn

×
∑

l∈Z+λ̃

v
λ1−λ2+1
l e−m|ax | cosh θm+2 cosh θl+cosh θn

2 +imay sinh θm−2 sinh θl+sinh θn
2 + ρ(θm)+2ρ(θl )+ρ(θn)

2

(1 + vmvl)(1 + vlvn) cosh θl
.

(4.26)

The indices take on the values m, n ∈ Z + λ̃ and

2ρ(θ) = η(θ; λ̃, λ̄)− η(θ; λ0, λ̃)+ iν(θ; λ̃, λ̄)− iν(θ; λ0, λ̃).

One can also write K as

K = 4 sin πλ1 sin πλ2 · VV T ,

Vmn = 1

β

(vmvn)
λ1−λ2+1

2 e−m|ax | cosh θm+cosh θn
2 +imay sinh θm−sinh θn

2 +ρ(θm)+ρ(θn)2√
cosh θm cosh θn(1+vmvn)

, m, n ∈ Z+λ̃.

These explicit formulae for the τ -function are in some sense a reward for the technical
work put in the calculation of the element of canonical basis on the 1-punctured cylinder
(Theorem 2.3). It would be interesting to compare them with the correlation functions
of twisted fields, calculated in the lattice regularization of the Dirac theory on the plane
[4].

Remark that the final answer (4.25)–(4.26) for the two-point τ -function is indepen-
dent of the choice of localization (coordinates of edges of the strips S1, . . . , Sn). To
show that this is true in the general case, we prove
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Proposition 4.5. The logarithmic derivatives of the τ -function (4.21) are given by

d ln τ(a, a0) = m

2

n∑

ν=1

{

a
(ν)
1/2(w̃ν(λ)) daν + a

(ν)
1/2(w̃ν(−λ)) dāν

}

. (4.27)

� Consider the n-point Green function Ga,λ(z, z′) and construct the map P̃ (a) : W →
Wint (a) in the following way:

P̃ (a)f (z) =
∫

∂S

G
a,λ
·,1 (z, z

′)f1(z
′)dz′ +G

a,λ
·,2 (z, z

′)f2(z
′)dz̄′. (4.28)

It is easy to see that this map defines the projection on Wint (a) along Wext . Indeed, let
us write the function f (z) as f = g + h, with g ∈ Wint (a) and h ∈ Wext . The form in
the integral P̃ (a)g(z) is closed, thus each piece ∂Sµ of the integration contour can be
shrunk up to two small circles, around z′ = z and z′ = aµ. Computing the residues, we
obtain P̃ (a)g(z) = g(z). In a similar fashion one also shows that P̃ (a)h(z) = 0.

It is clear that the admissible frame P(a) : Wint (a
0) → Wint (a) and the projection

pr+ : Wint (a) → Wint (a
0) are the restrictions

P(a) = P̃ (a)

∣
∣
∣
Wint (a

0)
, pr+ = P̃ (a0)

∣
∣
∣
Wint (a)

.

Let us analogously consider the map F̃ (a) : W → Wint (a), which is by definition
the direct sum of the one-point projections, F̃ (a) = PS1(a1)⊕ · · · ⊕ PSn(an). The sec-
ond admissible frame that we have used, F(a) : Wint (a

0) → Wint (a), is the restriction

F(a) = F̃ (a)

∣
∣
∣
Wint (a

0)
. Its inverse, which we denote as F(a0) : Wint (a) → Wint (a

0), is

given by F(a0) = F̃ (a0)

∣
∣
∣
Wint (a)

.

Therefore, differentiating (4.21), one obtains

d ln τ(a, a0) = −Tr
{
d
(
F(a)−1P(a)

)
P(a)−1F(a)

}

= −Tr
{
F(a0)d(P (a))pr+F(a)

}
.

Recall that the traces in the last formula, and the determinant in (4.21) as well, are cal-
culated on the subspaceWint (a

0). However, since the range of both F(a0) and F̃ (a0) is
Wint (a

0), we can forget about this restriction and replace under the last trace P(a) by
P̃ (a), F(a) by F̃ (a), pr+ by P̃ (a0) and F(a0) by F̃ (a0). If we also use the relations

P̃ (a)(1 − P̃ (a0)) = 0, F̃ (a)(1 − F̃ (a0)) = 0,

the trace becomes

d ln τ(a, a0) = −Tr
W

{
F̃ (a0)d(P̃ (a))P̃ (a0)F̃ (a)

}
= −Tr

W

{
d(P̃ (a))F̃ (a)

}
.
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Taking into account the explicit form (4.28) of P̃ (a) and the formulae (3.23)–(3.24)
for the derivatives of the Green function, one can show that dP̃ (a) is an integral operator
with degenerate kernel. Then we have, for example,

∂aν ln τ(a, a0) = im2

8 sin πλν

n∑

µ=1

∫

∂Sµ

{(
w̃ν(z,−λ)

)

1

(
PSµ(aµ)w̃ν(z, λ)

)

1
dz

+
(

w̃ν(z,−λ)
)

2

(
PSµ(aµ)w̃ν(z, λ)

)

2
dz̄
}
.

Again applying the Stokes theorem, each contour ∂Sµ can be shrunk to a small circle
around aµ. Only one circle, around aν , gives a non-zero contribution, which can be
calculated using the asymptotics of the one-point Green function. At the end of this
calculation one finds

∂aν ln τ(a, a0) = m

2
a
(ν)
1/2(w̃ν(λ)), ∂āν ln τ(a, a0) = m

2
a
(ν)
1/2(w̃ν(−λ)),

as claimed. ��

5. Deformation Equations

Let us now find the differential equations satisfied by the elements (3.20), using the idea
that we have already exploited in the calculation of the derivative of the Green function.
For example, consider the solution w̃µ(λ) and differentiate it with respect to aρ . We
obtain again a solution of the Dirac equation but with more singular local expansions at
the branchpoints:

∂aρ w̃µ(λ)[aν] =
∑

k>0

{
∂aρ a

(ν)
k (w̃µ(λ)) wk+λν [aν] + ∂aρ b

(ν)
k (w̃µ(λ)) w

∗
k−λν [aν]

}

−m
2
δρν

[

δµνw−3/2+λν [aν] +
∑

k>0

{
a
(ν)
k (w̃µ(λ)) wk−1+λν [aν]

+b(ν)k (w̃µ(λ)) w ∗
k+1−λν [aν]

}
]

.

Adding the appropriate linear combination of {w̃η(λ)}, {∂zw̃η(λ)} and {∂z̄w̃η(λ)} (η =
1, . . . , n), one can annihilate the coefficients near the “extra” terms w−3/2+λν and
w−1/2+λν . Then the result will vanish identically, since it is clearly in W̃a,λ. This obser-
vation can be written in the following general form:

da,ā �w(λ) = (� ∂z +�∗∂z̄ +�) �w(λ). (5.1)

Here da,ā =
n∑

j=1
(daj · ∂aj + dāj · ∂āj ) denotes the differential with respect to the

positions of the singularities, �, �∗ and � are matrix-valued one-forms, and �w(λ) =
(w̃1(λ) . . . w̃n(λ))T .
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Let us introduce the notation

Cj =
[
a
(ν)
j+1/2(w̃µ(λ))

]

µ,ν=1,... ,n
, C ∗

j =
[
b
(ν)
j−1/2(w̃µ(λ))

]

µ,ν=1,... ,n
, j ∈ Z.

(5.2)

In particular, one has C0 = 1 and Cj = C ∗
j = 0 for j < 0. The system (5.1), being

rewritten in terms of {Cj }, {C ∗
j }, amounts to

dCj − m

2
Cj+1dA− m

2
Cj−1dĀ = m

2
�Cj+1 + m

2
�∗Cj−1 +�Cj , (5.3)

dC ∗
j − m

2
C ∗
j−1dA− m

2
C ∗
j+1dĀ = m

2
�C ∗

j−1 + m

2
�∗C ∗

j+1 +�C ∗
j , (5.4)

where dA = (δµνdaν)µ,ν=1,... ,n and dĀ = (δµνdāν)µ,ν=1,... ,n.
Note that the expansion coefficients obey a set of algebraic relations. To derive them,

let us first consider two multivalued solutions to Dirac equation, u and v, that are square
integrable at |x| → ∞ and have the local expansions (2.3) at the singularities. We shall
assume that there exists a negative half-integer number k0 such that

a
(ν)
k (u) = b

(ν)
k (u) = a

(ν)
k (v) = b

(ν)
k (v) = 0, ν = 1, . . . , n,

for all k < k0. Using (2.9) and Stokes theorem, calculate in two different ways the
integral

m2

2

∫

C\⋃
ν
Dε(aν)

(ū1v1 + ū2v2) idz ∧ dz̄ = im

∮

⋃

ν
∂Dε(aν)

ū2v1 dz = −im
∮

⋃

ν
∂Dε(aν)

ū1v2 dz̄.

Comparing the asymptotics of the corresponding boundary integrals as ε → 0, one
obtains

n∑

ν=1

∑

k∈Z+ 1
2

{

b
(ν)
k (u) a

(ν)
−k (v)− a

(ν)
−k (u) b

(ν)
k (v)

}

(−1)k−1/2 sin πλν = 0. (5.5)

If we now put u = w̃µ, v = w̃ρ , then (5.5) leads to the relation (analogous to (2.13))

b
(ρ)
1/2(w̃µ) sin πλρ = b

(µ)
1/2(w̃ρ) sin πλµ,

or, in matrix notation,

C ∗
0 sin π� =

[
C ∗

0 sin π�
]T
, � = (

δµνλν
)
µ,ν=1,... ,n . (5.6)

On the other hand, the substitution u = w̃µ(λ), v = w̃∗
ν(−λ) gives

C1(λ) sin π� = [C1(−λ) sin π�]T . (5.7)

Finally, observe that the entries of then-dimensional vector ∂z̄ �w(λ)−m
2 C

∗
0 (λ) �w∗(−λ)

belong to W̃a,λ and thus are all equal to zero. This gives two more relations,

C ∗
0 (λ)C1(−λ) = C ∗

1 (λ), C ∗
0 (λ)C

∗
0 (−λ) = 1. (5.8)
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It is easy to see that for positive λµ, λν both w̃µ(λ), w̃ν(λ) ∈ Wa,λ, so we can calculate
the inner product:

〈w̃µ(λ), w̃ν(λ)〉 = −4 b(ν)1/2(w̃µ(λ)) sin πλν.

This shows that the submatrix of C ∗
0 (λ) sin π�, associated with the indices correspond-

ing to positive {λρ}, is negative definite. In a similar fashion, one finds

〈w̃∗
µ(−λ), w̃∗

ν(−λ)〉 = 4b(µ)1/2(w̃ν(−λ)) sin πλµ

for negative λµ, λν . Combining this formula with the second relation in (5.8), one can

prove that the submatrix of
(
C ∗

0 (λ)
)−1 sin π�, that corresponds to the “negative” indi-

ces, is positive definite.
Let us return to deformation equations (5.3) and (5.4). In order to determine the

unknown matrix-valued forms � and �∗, let j = −1. One then finds

� = −dA, �∗ = −C ∗
0 dĀ

(
C ∗

0

)−1
. (5.9)

Specializing to the case j = 0, we calculate the form � and obtain a matrix equation,

� = m

2
[dA,C1] = dC ∗

0

(
C ∗

0

)−1 + m

2

[
C ∗

0 dĀ
(
C ∗

0

)−1
, C ∗

1

(
C ∗

0

)−1
]
. (5.10)

For j = 1, higher order coefficients arise. However, the “antiholomorphic” part of (5.3)
and “holomorphic” part of (5.4) comprise only the coefficients that are already involved:

dāC1 + m

2

[
C ∗

0 dĀ,
(
C ∗

0

)−1
]

= 0, (5.11)

daC
∗
1 + m

2
[dA,C ∗

0 ] − m

2
[dA,C1]C ∗

1 = 0, (5.12)

where da =
n∑

j=1
daj · ∂aj and dā =

n∑

j=1
dāj · ∂āj In addition, the diagonal part of (5.3)

implies

da diagC1 = m

2
diag ([dA,C1]C1) . (5.13)

In order to write the deformation equations in more compact and standard form, introduce
the notation

G = C ∗
0 sin π�, � = m

2
[dA,C1], �† = �̄T . (5.14)

Using the symmetry relations (5.6)–(5.8), one can show that (5.10) transforms into

dG = �G+G�†. (5.15)

Instead of Eqs. (5.11) and (5.12) we have two conjugate relations

dā C1 = m

2
[dĀ,G]G−1, da C1 = m

2
[dA,G]G

−1
, (5.16)
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and the last Eq. (5.13) can be rewritten as

da diagC1 = diag (�C1). (5.17)

We easily find from (5.14) and (5.15) that detG = const. It is also very instructive
to deduce the closedness of the 1-form

� = m

2

n∑

ν=1

{

a
(ν)
1/2(w̃ν(λ)) daν + a

(ν)
1/2(w̃ν(−λ)) dāν

}

= m

2
Tr (C1dA+ C1dĀ),

standing in the RHS of (4.27), from the deformation equations. Indeed,

d� = m

2
Tr

(
�C1 ∧ dA+ m

2
[dĀ,G]G−1 ∧ dA+�C1 ∧ dĀ+ m

2
[dA,G]G

−1 ∧ dĀ
)

= −m
2

4
Tr

(
C1dA ∧ C1dA+ C1dĀ ∧ C1dĀ+GdĀ ∧G−1dA+GdA ∧G−1

dĀ
)

= 0,

so the form � does represent the differential of a function.

Example. As an illustration, let us find the explicit form of the deformation equations
in the case n = 2. Suppose that λ1 > 0 and λ2 < 0. Then G11 < 0, detG < 0, and the
matrix G can be parametrized in the following way:

G = χ

( −eη sinψ eiϕ cosψ
e−iϕ cosψ e−η sinψ

)

, χ, η, ψ, ϕ ∈ R,

where 0 < ψ < π , χ > 0. We shall also denote

C1 =
(
�11 �12
�21 �22

)

, q = m(a2 − a1)/2, q̄ = m(ā2 − ā1)/2.

From (5.15) one obtains

∂G

∂q
= −χ−1

(
�12e

−iϕ cosψ �12e
−η sinψ

�21e
η sinψ −�21e

iϕ cosψ

)

,

∂G

∂q̄
= −χ−1

(
�12e

iϕ cosψ �21e
η sinψ

�12e
−η sinψ −�21e

−iϕ cosψ

)

.

This leads to the relations

∂qϕ = i tg2ψ ∂qη, ∂q̄ϕ = −i tg2ψ ∂q̄η,

�12 = eη+iϕ
(
∂qψ − i ctgψ ∂qϕ

)
, �21 = e−η−iϕ

(
∂qψ + i ctgψ ∂qϕ

)
.

Next, the first formula in (5.16) implies that

∂C1

∂q̄
= −

(
cos2 ψ eη+iϕ cosψ sinψ

e−η−iϕ cosψ sinψ − cos2 ψ

)

. (5.18)

The off-diagonal part of this relation leads to a system of coupled differential equations,
{
∂qq̄ψ + cosψ

sin3 ψ
∂qϕ ∂q̄ϕ + sinψ cosψ = 0,

∂qq̄ϕ = 1
sinψ cosψ

(
∂qϕ ∂q̄ψ + ∂q̄ϕ ∂qψ

)
.

Finally, the formula (5.17) and the diagonal part of (5.18) give the second logarithmic
derivatives of the τ -function:






∂qq̄ ln τ = cos2 ψ,

∂qq ln τ = (∂qψ)
2 + ctg2ψ (∂qϕ)

2,

∂q̄q̄ ln τ = (∂q̄ψ)
2 + ctg2ψ (∂q̄ϕ)

2.

(5.19)
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6. Discussion

When one tries to generalize the above theory, a natural question arises: if it is possible
to develop the theory of monodromy preserving deformations for the massive Dirac
operator on the arbitrary two-dimensional surface M with a metric? It appears that M
should be then a homogeneous space for a group G, acting on M by isometries. There
are only five such surfaces: plane (G = E(2)), cylinder and torus (G = T 2), Poincaré
disk (G = PSU(1, 1)) and the sphere (G = PSU(2)). The plane and hyperbolic disk
were studied earlier by different authors (see references in the Introduction). The present
paper is devoted to the cylindrical geometry. It is interesting to note that the derivation of
all “implicit” results (factorized form of the derivatives of Green functions, deformation
equations, etc.) can be transferred almost literally to the case of torus. What is even more
important — the technical results, obtained in this work (namely, the formulae for the
one-point projections in the Theorem 4.2) allow to calculate the τ -functions on the torus
explicitly. I hope to discuss these matters in greater detail elsewhere.

The second task is to give a proper formulation and solution of the problem in the
quantum field theory language. Let us interpret the coordinate along the cylinder axis
as time, with the space coordinate living on the circle. The time axis is split by the
branchcuts b1, . . . , bn into n + 1 intervals. The evolution in each interval is governed
by the Dirac hamiltonian, which is diagonalized in the free-fermion basis. These free
fermions, however, obey different periodicity conditions (statistics) in different intervals.
Corresponding Fock spaces are intertwined by the monodromy fields, whose correlation
functions can be written in terms of Lehmann expansion over intermediate eigenstates
of the hamiltonians. (In the two-point case, this corresponds to the expansion of the
determinant (4.25).) The problem transforms then into the calculation of form factors of
monodromy fields in the finite volume.

Another important problem is the investigation of the ultraviolet (m → 0) asymptot-
ics of the τ -functions. On the plane, the connection between the Ising model and singular
Dirac operators was already used in [11] to give a rigorous proof of the Luther-Peschel
formula.
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