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Abstract

A family of interacting local fields, generalizing disorder variables
of the 2D Ising model, is constructed from free Dirac fermions on the
lattice. We express vacuum expectation values of these fields and form
factor expansions of their correlation functions in terms of determinants
and inverses of Toeplitz matrices of remarkably simple form.

1 Introduction

In recent years, an increasing attention has been paid to the study of correla-
tion functions in quantum field theory (QFT) in a finite volume. Matsubara
imaginary time formalism relates such correlation functions to the correla-
tion functions at non-zero temperature, which are the quantities of principal
interest in condensed matter theory.

It is common to represent correlation functions in massive theories via Cal-
len-Lehmann expansion over intermediate eigenstates. Building blocks for this
representation are eigenvalues of the hamiltonian and form factors, i. e. matrix
elements of the field operators in the basis of corresponding eigenstates. The
main achievements in the investigation of finite-volume spectrum are related to
integrable 2D QFTs. Two methods of calculation of form factors in integrable
QFT, namely, bootstrap approach [19] and angular quantization [2], do not
work in the finite volume. Therefore, only a few results are known so far,
in particular, exact vacuum expectation values in the sinh-Gordon model [15]
and spin form factors in the Ising field theory [3, 4, 9].

A possible way to obtain exact finite-volume form factors and correlation
functions for other integrable QFTs is following. One should find first an in-
tegrable lattice regularization of the theory, then to compute transfer matrix
spectrum and form factors on the finite lattice and then to consider the ap-
propriate limit. Exactly this scheme has been realized for the Ising model.
Another case where it hopefully works is the sine-Gordon field theory and
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2 Lattice Dirac operator and monodromy fields 171

related to it massive Thirring model: it is known that the latter system arise
in the scaling limit of an inhomogeneous six-vertex model [6], which is in turn
related to XXZ quantum spin chain. Form factors of the last system have
been recently calculated in [12].

The present paper is devoted to the calculation of the finite-volume vacuum
expectation values and two-point correlation functions of lattice monodromy
fields [5, 16]. These fields are lattice analogs of the exponential fields of the
sine-Gordon model at the free-fermion point. Infinite-volume form factors of
the exponential fields can be calculated in several ways [1, 17, 18], but none
of the existing methods can be generalized to the finite volume (see, however,
[7, 8]). Besides the lattice approach, developed in this work, one may also
hope to obtain finite-volume correlators of the exponential fields directly in
the continuum limit, using monodromy preserving deformation theory for the
Dirac equation on the cylinder [13]. Actually, we have already obtained the
simplest one-particle form factors in this way.

This paper is organized as follows. In Section 2, monodromy fields are
constructed from free Dirac fermions on the lattice. Any finite-volume corre-
lation function of these fields can be formally written as the determinant of
the Dirac operator on a cylindrical lattice with defects. Sections 3 and 4 are
devoted to vacuum expectation values and two-point correlation functions of
monodromy fields. These quantities are expressed in terms of determinants
and inverses of certain Toeplitz matrices of size independent of the separation
of correlating fields. The formulae for correlation functions have the form of
form factor expansions. In Section 5, after a simple check of our results, we
present explicit expressions for the determinants of relevant Toeplitz matrices
in one nontrivial case: for a particular choice of monodromy lattice exponential
fields are related to the disorder variables of the two-dimensional Ising model.
This is a lattice version of the well-known connection between the Ising field
theory and sine-Gordon model at the free-fermion point [18].

2 Lattice Dirac operator and monodromy fields

We wish to consider the lattice drawn in the Fig. 1. To each site of the lattice
we attach a two-component complex fermion field ψ(rx, ry), where rx ∈ Z,
ry = 0, 1, . . . , N − 1 and quasiperiodic boundary conditions are imposed:

ψ(rx, ry + N) = e2πiαψ(rx, ry).
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Let us introduce lattice shifts ∇x, ∇y

∇xψ(rx, ry) = ψ(rx + 1, ry), ∇yψ(rx, ry) = ψ(rx, ry + 1)

and define lattice Dirac operator as follows

D̂ =
(

1− t∇y 1− t∇x

−(1− t∇−x) 1− t∇−y

)
. (1)

This choice of regularization is prompted by the study of the two-dimensional
Ising model. Parameter t, which is assumed to be real and positive, is related
to the Ising coupling constant K by t = sinh 2K.

Recall that in the definition of the usual continuous Dirac operator

D = m + γx∂x + γy∂y

one can suppose that γx, γy are given by two arbitrary Pauli matrices. To re-
cover this continuous operator, one should first consider the following “naive”
continuum limit of (1):

∇x → 1 + a∂x, ∇y → 1 + a∂y,

t− 1 → −ma√
2
, ψ → √

aψ, a → 0.

Operator (1) transforms then into

Dnaive → m√
2

(
1 −1
1 1

)
+ σx∂x + σz∂y,

where we denote as usual

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.
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In order to make the mass term diagonal, one can apply the transformation
ψ → eiσyπ/8ψ. Since for Dirac conjugate we have

ψ̄ = ψ†σz → ψ†e−iσyπ/8σx = ψ†σxeiσyπ/8 = ψ̄ eiσyπ/8,

the operator Dnaive transforms into

D = m + σx∂x + σz∂y.

This continuum limit can be also performed more accurately, i.e. at the quan-
tum level, but we will not pursue this question further.

In two dimensions, there is an interesting way to define new local fields
which are manifestly nonlocal in terms of old ones. The most known example
is provided by the correspondence between the sine-Gordon model and massive
Thirring fermions. Sine-Gordon bosons are nonlocal in terms of fermion fields,
which yields their nontrivial scattering even at the free-fermion point.

The same phenomenon on the lattice happens, for instance, in the two-
dimensional Ising model, which is related to free Majorana fermions. The local
free fermion field here is nonlocal in terms of spin variables (Wigner strings).
It is possible to construct yet another local field, called disorder variable. In
terms of spin variables, this latter represents a magnetic dislocation which
starts at a given point and goes to infinity.

In general, such a phenomenon is possible when the theory has a continuous
or discrete symmetry. We will illustrate the general idea on the example of
complex free fermions on the lattice. These fermions are characterized by the
action

S[ψ, ψ̄] =
∑
rx,ry

ψ̄(rx, ry)D̂ ψ(rx, ry).

Now consider a closed path P on the dual lattice, shown in the Fig. 2 by
dashed lines (it can also have self-intersections). Let us make the change of
variables ψ → e2πiνψ at all sites enclosed by this contour. Due to global
U(1)-invariance, the action will change only on the edges intersected by P .
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The calculation of correlation functions includes the integration over all
Grassmann fields. It is easy to understand that any described closed defect of
the action is equivalent to zero under the functional integral, since it can be
removed by a change of variables. Therefore, if we add to the action a term
corresponding to some open defect, the integral will depend on its endpoints A
and B, but not on the concrete shape of the path joining them. If the points A
and B are located on the line, parallel to the cylinder axis, then this additional
term can be taken in the following form:

δSAB = t
r−1∑

rx=0

(
ξψ̄1(rx, N − 1)ψ1(rx, 0) + ξ∗ψ̄2(rx, 0)ψ2(rx, N − 1)

)
,

ξ = e2πiα(1− e2πiν).

It can also be encoded into the change of boundary conditions:
{

ψ(rx, ry + N) = e2πiαψ(rx, ry) for rx < 0 and rx > r − 1,

ψ(rx, ry + N) = e2πi(α+ν)ψ(rx, ry) for 0 ≤ rx ≤ r − 1.

Now one can define two-point correlation function of monodromy fields as
a normalized partition function of the Dirac model with the defect. It can
be written as the ratio of determinants of the corresponding lattice Dirac
operators:

〈Oα,α+ν(A)Oα+ν,α(B)〉 =
∫

d[ψ, ψ̄] eS[ψ,ψ̄]+δSAB

∫
d[ψ, ψ̄] eS[ψ,ψ̄]

=
det D̂ def

det D̂
.
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Generalization to the multipoint case is straightforward. Monodromy fields
live on the dual lattice and can be thought of as open defects that start from
a given point and go to infinity. Formally one can write

Oα+ν,α

(
x +

1
2
, y +

1
2

)
=

exp

{
t

x∑
rx=−∞

(
ξψ̄1(rx, y)ψ1(rx, y + 1) + ξ∗ψ̄2(rx, y + 1)ψ2(rx, y)

)}
.

Locality of these fields implies, in particular, that their correlation functions
can be represented via form factor expansions.

Consider, for instance, two-point correlator 〈Oα,α+ν(0, 0)Oα+ν,α(rx, ry)〉.
In this case it is convenient to divide the axis of discrete time into three inter-
vals: (−∞; 0), [0, rx) and [rx;∞). The evolution is governed by the hamilto-
nian of free Dirac fermions on the lattice with different periodicity conditions
in each interval. Taking this into account, one obtains

〈Oα,α+ν(0, 0)Oα+ν,α(rx, ry)〉 =∑
n

α〈vac|Oα,α+ν(0, 0)|n〉α+ν α+ν 〈n|Oα+ν,α(0, 0)|vac〉α e−rxEn+iryPn ,

where n labels orthonormal multiparticle eigenstates of the hamiltonian, and
En, Pn denote their energies and quasimomenta. This is the form of the answer
that we expect to obtain.

3 Vacuum expectation values of monodromy fields

First term of the infrared asymptotics of correlation functions is determined
by the product of vacuum expectation values

M2
α,α+ν = α〈vac|Oα,α+ν(0, 0)|vac〉α+ν α+ν 〈vac|Oα+ν,α(0, 0)|vac〉α (2)

Note that since our field operator intertwines Hilbert spaces which correspond
to different periodicity conditions, the vacua on its left and right hand side
are different vectors.

Monodromy fields are well-defined only inside correlation functions. In or-
der to calculate their matrix elements, one should first regularize them.
The problem is basically the following. Vacuum expectation value
α〈vac|Oα,α+ν(0, 0)|vac〉α+ν is proportional to the (infinite) partition function
of free fermions, which obey different boundary conditions for rx > 0 and
rx < 0. We will correspond to this partition function the following picture:
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How can one find the appropriate proportionality factor without calculating
two-point correlation function first?

The idea is to consider the product (2), which is proportional to

If we formally divide this by the product of two partition functions without
the defects but with different boundary conditions for fermions, symbolically
represented by

then the result will be finite and meaningful. It will be shown later that such
a ratio gives us the product (2). It coincides with the normalized partition
function of the system of two free fermion fields ψ, ϕ with a circular defect:

M2
α,α+ν =

∫
d[ψ, ψ̄] d[ϕ, ϕ̄] e ψ̄D̂(α)ψ+ϕ̄D̂(ν+α)ϕ+δS1

∫
d[ψ, ψ̄] d[ϕ, ϕ̄] e ψ̄D̂(α)ψ+ϕ̄D̂(ν+α)ϕ

, (3)
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where the explicit form of δS1 is given by

δS1 = t
N−1∑

ry=0

{
ψ̄1(0, ry)ψ2(1, ry)− ψ̄2(1, ry)ψ1(0, ry) + ϕ̄1(0, ry)ϕ2(1, ry)−

−ϕ̄2(1, ry)ϕ1(0, ry)− ψ̄1(0, ry)ϕ2(1, ry) + ϕ̄2(1, ry)ψ1(0, ry)−
−ϕ̄1(0, ry)ψ2(1, ry) + ψ̄2(1, ry)ϕ1(0, ry)

}

= t

N−1∑

ry=0

{(
ϕ̄1(0, ry)− ψ̄1(0, ry)

)(
ϕ2(1, ry)− ψ2(1, ry)

)−

−(
ϕ̄2(1, ry)− ψ̄2(1, ry)

)(
ϕ1(0, ry)− ψ1(0, ry)

)}
.

It is convenient to represent the extra factor e δS1 as an integral over auxiliary
two-component complex Grassmann field µ, living on the “circle” of length N :

e δS1 = eχ̄P T JPχ =
∫

d[µ, µ̄] e µ̄Jµ+µ̄Pχ−χ̄P T µ,

where

J =
(

0 1N

−1N 0

)
, χ =

(
ϕ1 − ψ1

ϕ2 − ψ2

)
, (4)

P =
√

t

(
1N δ0,rx 0

0 1N δ1,rx

)
. (5)

Changing the order of integration in the numerator of (3) and using well-
known formulae, one can easily evaluate the integrals over initial fields ψ and
ϕ. The integral over auxiliary field then gives

M2
α,α+ν =

∫
d[µ, µ̄] e −µ̄Gµ = detG.

Here, the matrix G is given by

G =
(

G11 G12

G21 G22

)
= −J + P

(
D̂(α)

)−1
P T + P

(
D̂(α+ν)

)−1
P T . (6)

Its N × N blocks Gij (i, j = 1, 2) can be written more explicitly. They may
be expressed in terms of the inverse matrix elements of Dirac operators corre-
sponding to different boundary conditions:

(G11)yy′ = t

[(
D̂(α)

)−1

11

]

(0y)(0y′)
+ t

[(
D̂(α+ν)

)−1

11

]

(0y)(0y′)
, (7)
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(G12)yy′ = −δyy′ + t

[(
D̂(α)

)−1

12

]

(0y)(1y′)
+ t

[(
D̂(α+ν)

)−1

12

]

(0y)(1y′)
, (8)

(G21)yy′ = δyy′ + t

[(
D̂(α)

)−1

21

]

(1y)(0y′)
+ t

[(
D̂(α+ν)

)−1

21

]

(1y)(0y′)
, (9)

(G22)yy′ = t

[(
D̂(α)

)−1

22

]

(1y)(1y′)
+ t

[(
D̂(α+ν)

)−1

22

]

(1y)(1y′)
. (10)

The Dirac operator and its inverse are given by diagonal matrices in the Fourier
representation. Using the inverse transformation, it is then straightforward to
obtain

(
D̂(α)

)−1

(xy)(x′y′)
=

1
2πN

∑
py

(α)
π∫

−π

dpx

(
1− te−ipy −1 + teipx

1− te−ipx 1− teipy

)
eipx(x−x′)+ipy(y−y′)

2tDpxpy

.
(11)

Here the sum
∑
py

(α) is performed over the discrete values of the second

component of quasimomentum: py = 2π
N (j +α) (j = 0, 1, . . . , N−1). We have

also introduced the notation

Dpxpy = t + t−1 − cos px − cos py.

Substituting (11) into the formulae (7)–(10) for matrix elements of G, one
finds

(G11)yy′ =
1

2πN

∑
py

(α)
π∫

−π

dpx
1− te−ipy

2Dpxpy

eipy(y−y′) +

+
1

2πN

∑
py

(α+ν)
π∫

−π

dpx
1− te−ipy

2Dpxpy

eipy(y−y′),

(G22)yy′ =
1

2πN

∑
py

(α)
π∫

−π

dpx
1− teipy

2Dpxpy

eipy(y−y′) +

+
1

2πN

∑
py

(α+ν)
π∫

−π

dpx
1− teipy

2Dpxpy

eipy(y−y′),
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(G12)yy′ = − (G21)yy′ = − 1
2t

[
(G11)yy′ + (G22)yy′

]
.

The expressions defining G can be simplified even more. Consider the matrix

G̃ = R G R, R = e iσyθ/2, ctg θ = t.

One may verify that G̃ is block-diagonal:
(
G̃12

)
yy′

=
(
G̃21

)
yy′

= 0,

(
G̃11

)
yy′

=
√

1 + t2 + t

2t
(G11)yy′ +

√
1 + t2 − t

2t
(G22)yy′ ,

(
G̃22

)
yy′

=
√

1 + t2 − t

2t
(G11)yy′ +

√
1 + t2 + t

2t
(G22)yy′ .

The integrals over continuous quasimomentum px can be calculated by residues.
We obtain

1
2π

π∫

−π

dpx

Dpxpy

=
1

sinh γ(py)
,

where the function γ(p) > 0 is given by the positive root of the equation

cosh γ(p) = t + t−1 − cos p,

which represents a lattice analog of the relativistic energy dispersion low. Note
that the following relations hold:

√
1 + t2 ± 1

t
=

{
e±

γ(π)+γ(0)
2 for 0 < t < 1,

e±
γ(π)−γ(0)

2 for t > 1,

√
1 + t2 ± t =

{
e±

γ(π)−γ(0)
2 for 0 < t < 1,

e±
γ(π)+γ(0)

2 for t > 1.

Taking into account the above remarks, it is straightforward to obtain the
representation for the product (2) of the vacuum expectation values of mon-
odromy fields in terms of N ×N Toeplitz matrices:

M2
α,α+ν = det G̃11 det G̃22

= det

(
A(α) + A(α+ν)

2

)
det

((
A(α)

)−1
+

(
A(α+ν)

)−1

2

)
, (12)
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A
(α)
yy′ =

1
N

∑
py

(α)
C

(
eipy

)
eipy(y−y′), y, y′ = 0, 1, . . . , N − 1. (13)

The form of the function C(z) is different in the “ferromagnetic” (t > 1) and
“paramagnetic” (0 < t < 1) region of values of the parameter t, and is given
by the known Toeplitz kernels arising in the study of the two-dimensional Ising
model:

C(z) =





√(
1− e−γ(0)z−1

) (
1− e−γ(π)z

)
(
1− e−γ(0)z

) (
1− e−γ(π)z−1

) for 0 < t < 1,

−z−1

√ (
1− e−γ(0)z

) (
1− e−γ(π)z

)
(
1− e−γ(0)z−1

) (
1− e−γ(π)z−1

) for t > 1.

(14)

4 Correlation functions of monodromy fields

The calculation of correlation functions is based on the same technical ideas
as the previous construction. Namely, we will study the product

Fα,α+ν(r) = 〈Oα,α+ν(0, 0)Oα+ν,α(r, 0)〉 〈Oα+ν,α(0, 0)Oα,α+ν(r, 0)〉, (15)

which can be represented by the following picture (the normalization is un-
derstood):

Now we have two circular defects. The additional term δS2 in the expression
for the product of correlation functions

Fα,α+ν(r) =
∫

d[ψ, ψ̄] d[ϕ, ϕ̄] e ψ̄D̂(α)ψ+ϕ̄D̂(ν+α)ϕ+δS2

∫
d[ψ, ψ̄] d[ϕ, ϕ̄] e ψ̄D̂(α)ψ+ϕ̄D̂(ν+α)ϕ
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is given by

δS2 = t

N−1∑

ry=0

{(
ϕ̄1(0, ry)− ψ̄1(0, ry)

)(
ϕ2(1, ry)− ψ2(1, ry)

)−

−(
ϕ̄2(1, ry)− ψ̄2(1, ry)

)(
ϕ1(0, ry)− ψ1(0, ry)

)
+

+
(
ϕ̄1(r, ry)− ψ̄1(r, ry)

)(
ϕ2(r + 1, ry)− ψ2(r + 1, ry)

)−

−(
ϕ̄2(r + 1, ry)− ψ̄2(r + 1, ry)

)(
ϕ1(r, ry)− ψ1(r, ry)

)}

= χ̄P T JPχ + χ̄QT JQχ,

where J , P , χ are defined by formulae (4)–(5) and

Q =
√

t

(
1N δr,rx 0

0 1N δr+1,rx

)
.

Again, it is convenient to represent the extra factor eδS2 as an integral, this
time over two-auxiliary two-component complex fermion fields µ, η:

e δS2 =
∫

d[µ, µ̄] d[η, η̄] e µ̄Jµ+µ̄Pχ−χ̄P T µ+η̄Jη+η̄Qχ−χ̄QT η.

After the change of order of integration we obtain

Fα,α+ν(r) =
∫

d[µ, µ̄] d[η, η̄] e −(µ̄ η̄) H (µ η)T
= detH,

where 4N × 4N matrix H is defined as

H =

(
−J + P

“
D̂(α)

”−1
P T + P

“
D̂(α+ν)

”−1
P T P

“
D̂(α)

”−1
QT + P

“
D̂(α+ν)

”−1
QT

Q
“

D̂(α)
”−1

P T + Q
“

D̂(α+ν)
”−1

P T −J + Q
“

D̂(α)
”−1

QT + Q
“

D̂(α+ν)
”−1

QT

)
.

Its 2N×2N blocks H11 and H22 coincide with the matrix G given by (6)–(10).
This prompts to consider the matrix

H̃ =
(

R 0
0 R

)
H

(
R 0
0 R

)
,

since after this transformation the blocks H̃11 and H̃22 are itself block-diagonal:

H̃11 = H̃22 = G̃ =

(
A(α)+A(α+ν)

2 0

0 (A(α))−1
+(A(α+ν))−1

2

)
.
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The other two blocks, H̃12 and H̃21, are exponentially small for large r:

H̃12 =

(
K(α)+K(α+ν)

2
M(α)+M(α+ν)

2
M(α)+M(α+ν)

2
L(α)+L(α+ν)

2

)
,

H̃21 =

(
K(α)+K(α+ν)

2 −M(α)+M(α+ν)

2

−M(α)+M(α+ν)

2
L(α)+L(α+ν)

2

)
,

where

K
(α)
yy′ =

1
N

∑
py

(α)
C

(
eipy

)
e−rγ(py)+ipy(y−y′),

L
(α)
yy′ =

1
N

∑
py

(α)
C−1

(
eipy

)
e−rγ(py)+ipy(y−y′),

M
(α)
yy′ =

1
N

∑
py

(α)
e−rγ(py)+ipy(y−y′).

Finally, for the product of correlation functions we obtain

Fα,α+ν(r) = det H̃ = det
(

G̃ H̃12

H̃21 G̃

)
=

(
det G̃

)2
det

(
1−G̃−1H̃12 G̃−1H̃21

)

= M 4
α,α+ν det

(
1− G̃−1H̃12 G̃−1H̃21

)
. (16)

This shows that the integrals (3) indeed give us the vacuum expectation values.
It is also clear that the expansion of (16)

det (1−B) = 1− TrB +
1
2

[
(TrB)2 − TrB2

]
+ . . . ,

B = G̃−1H̃12 G̃−1H̃21 ,

correspond to form factor representation of the product (15) (nth term of this
series contains 2n factors of type e−rγ(p)).

Therefore, to solve the problem of calculation of vacuum expectation values
and correlation functions of monodromy fields completely, it remains to find
the determinants and inverses of matrices A(ν1)+A(ν2)

2 (see (12)–(14)). It is
worth to note that Toeplitz matrices of the same type have recently arisen in
the study of free-fermion statistical models [14].
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5 One nontrivial case

A simple check of the above formulae can be performed for ν = 0, since in this
case both Mα,α(r) and Fα,α(r) should be equal to 1 by definition. As for the
first quantity, this is an immediate consequence of the representation (12). To
prove the same thing for Fα,α(r), we remark that

Fα,α(r) = det

{(
1 0
0 1

)
−

( (
A(α)

)−1
0

0 A(α)

)(
K(α) M (α)

M (α) L(α)

)

×
( (

A(α)
)−1

0
0 A(α)

)(
K(α) −M (α)

−M (α) L(α)

)}
.

The matrices A(α), K(α), L(α), M (α) can be simultaneously diagonalized by
the discrete Fourier transformation, so that

(
G̃−1H̃12 G̃−1H̃21

)
qq′

=
1
N

N−1∑

y,y′=0

(
G̃−1H̃12 G̃−1H̃21

)
yy′

e−iqy+iq′y′

=
(

C−1
(
eiq

)
0

0 C
(
eiq

)
)(

C
(
eiq

)
1

1 C−1
(
eiq

)
)

×
(

C−1
(
eiq

)
0

0 C
(
eiq

)
)(

C
(
eiq

) −1
−1 C−1

(
eiq

)
)

e−2rγ(q) δqq′ = 0.

Consequently, one obtains Fα,α(r) = 1.
There is also one nontrivial case where the explicit form of the answer for

the determinants (12) is known. Namely, when α = 0 and ν = 1
2 , the above

theory is related to the Ising model on the cylindrical lattice. In particular,
for 0 < t < 1 the correlation function of monodromy fields coincides with the
squared correlator of the Ising disorder operators:

〈O0, 1
2
(0, 0)O 1

2
,0(r, 0)〉 = 〈O 1

2
,0(0, 0)O0, 1

2
(r, 0)〉 = 〈µ(0, 0)µ(r, 0)〉 2,

and, therefore,

M 0, 1
2

=
(

0〈vac|µ(0, 0)|vac〉 1
2

)2
.

All Ising form factors on the finite periodic lattice are known [3, 4, 10, 11]. In
particular, the vacuum expectation value is given by

(
0〈vac|µ(0, 0)|vac〉 1

2

)2
= ξ · ξT ,
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where

ξ 4 =
sinh γ(0) sinh γ(π)

sinh γ(0)+γ(π)
2

=
∣∣1− t4

∣∣ , (17)

ξ 4
T =

∏
q

(0)∏
p

(1/2) sinh2 γ(q)+γ(p)
2

∏
q

(0)∏
p

(0) sinh γ(q)+γ(p)
2

∏
q

(1/2)∏
p

(1/2) sinh γ(q)+γ(p)
2

.

Thus we have

det

(
A(0) + A(1/2)

2

)
= det

((
A(0)

)−1
+

(
A(1/2)

)−1

2

)
= ξ · ξT . (18)

Note that this last formula can be checked both analytically and numerically
for small values of N . However, it is not clear how it can be obtained directly
from the representation (12)–(14), without passing through the solution of
the Ising model on the cylinder. A proof of (18), not referring to the Ising
model, would give a strong insight on how to obtain the answer for general
monodromy.

It should be noted that for N → ∞ one has ξT → 1, and the relation
(17) reproduces Yang’s formula [20] for Ising spontaneous magnetization. We
conjecture a similar behaviour for general α, ν: if 0 < t < 1, then the quantity
Mα,α+ν should tend to some finite value as N → ∞. Up to the present
moment, this assumption has no strict mathematical proof, and is supported
only by a numerical evidence.
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