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Spin matrix elements in 2D Ising model on the finite lattice
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Abstract

We present the explicit formulas for all spin matrix elements in 2D Ising model with the nearest neighbor interac
the finite periodic square lattice. These expressions generalize the known results [Phys. Rev. D 19 (1979); hep-th/
J. Stat. Phys. 110 (2003)] (coincide with them in the appropriate limits) and fulfill the test of straightforward transfer
calculations for finiteN .
 2003 Elsevier B.V. All rights reserved.
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1. Eigenvalues and eigenvectors of transfer matrix

It is well known (see [7,8]) that the spectrum of 2N × 2N transfer matrix, corresponding to Ising model on
periodic square lattice, consists of two sets:

(1)λ = (2s)N/2 exp

{
1

2

(±γ (0) ± γ (2π/N) ± · · · ± γ (2π − 2π/N)
)}

,

(2)λ = (2s)N/2 exp

{
1

2

(±γ (π/N) ± γ (3π/N) ± · · · ± γ (2π − π/N)
)}

,

wheres = sinh2K andK is the Ising coupling constant. The functionγ (q) is defined as the positive root of th
equation

coshγ (q) = s + s−1 − cosq,

which is the lattice analog of the relativistic energy dispersion law. The number of minuses in (1) is e
ferromagnetic (s > 1) and odd in paramagnetic (0< s < 1) phase, while the number of minuses in (2) is even
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both phases. The eigenvalues (1) (or (2)) correspond to eigenvectors that are odd (respectively, even) u
reflection.

The notation and terminology, introduced in [6] for the analysis of continuum limit, are also very conven
the lattice. In what follows, odd and even eigenvectors of Ising transfer matrix will be interpreted as multip
states from the Ramond and Neveu–Schwartz sector. Quasimomenta of R-particles can be equal to2π

N
j (j =

0,1, . . . ,N − 1), while for NS-particles they take on the values2π
N

(j + 1
2) (j = 0,1, . . . ,N − 1). Each eigenstat

consists of particles of only one type, and their quasimomenta must be different.
We will denote by|p1, . . . , pK 〉NS(R) normalized eigenstate, containing particles with the momentap1, . . . , pK .

Since R-sector in paramagnetic phase contains the state|0〉R (one particle with zero momentum), it will b
convenient to denote NS and R vacua by|∅〉NS and|∅〉R. The goal of the present Letter is to find matrix eleme
NS〈p1, . . . , pK |σ |q1, . . . , qL〉R of the Ising spinσ in the described basis of normalized eigenstates. (R–R
NS–NS matrix elements vanish due toZ2-symmetry of the model.)

2. Lattice form factors and scaling limit

All n-point correlation functions in the Ising model on the cylinder and torus can be easily expressed v
matrix elements. However, known results were obtained in rather inverse way. At the first stage, 2-point fu
are expressed through the determinants of certain Toeplitz matrices with a size that depends on the sep
correlating spins. To extract the analytic dependence on distance from these representations, a lot of furt
was needed [2]. The final answer [3,4] allows to calculate squared form factors on the cylinder (on the
lattice the above program was realized earlier in [9,10,12]):

(3)
∣∣NS〈∅|σ |q1, . . . , qL〉R

∣∣2 = ξξT

L∏
j=1

e−ν(qj )

N sinhγ (qj )

∏
1�i<j�L

(
sin

qi−qj

2

sinhγ (qi)+γ (qj )

2

)2

.

Hereξ = |1− s−4|1/4, quasimomenta have discrete R-values and cylindrical parametersξT, ν(q) are given by

(4)ln ξT = N2

2π2

π∫
0

π∫
0

dp dq γ ′(p)γ ′(q)

sinh(Nγ (p))sinh(Nγ (q))
ln

∣∣∣∣sin((p + q)/2)

sin((p − q)/2)

∣∣∣∣,

(5)ν(q) = 1

2π

π∫
−π

dp sinhγ (q)

coshγ (q) − cosp
ln coth

(
Nγ (p)/2

)
.

In the thermodynamic limitN → ∞ these parameters vanish (ξT → 1, ν(q) → 0) and (3) transforms into classic
formula [10,12]:

(6)
∣∣NS〈∅|σ |q1, . . . , qL〉R

∣∣2 = ξ

L∏
j=1

1

sinhγ (qj )

∏
1�i<j�L

(
sin qi−qj

2

sinh
γ (qi)+γ (qj )

2

)2

,

where{qj } can take on arbitrary values in the interval[−π,π].
In the scaling limit, Ising model on the plane was shown to be equivalent to a relativistic quantum field

with two-particleS-matrix equal to−1 (see [11]). Then it became possible to use the results of [1] and to calc
all spin matrix elements:

(7)NS〈p1, . . . , pK |σ |q1, . . . , qL〉R =√
ξ

K∏
i=1

1√
2πω(pi)

L∏
j=1

1√
2πω(qj )

F
({p}∣∣{q}),
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(8)F
({p}∣∣{q})=

∏
1�i<j�K

pi − pj

ω(pi) + ω(pj )

∏
1�i<j�L

qi − qj

ω(qi) + ω(qj )

∏
1�i�K
1�j�L

ω(pi) + ω(qj )

pi − qj

.

Hereω(q) =√
m2 + q2 and the momenta of both type of particles take on arbitrary real values. The RHS o

usually written with the factori[ K+L
2 ], but it can be removed by the change of the basis and will be omitted in

follows.
Very recently, Fonseca and Zamolodchikov [6] announced and promised to give the proof of a similar f

for the scaling limit on the cylinder:

(9)NS〈p1, . . . , pK |σ |q1, . . . , qL〉R =
√

ξ ξ̃T

K∏
i=1

eν̃(pi)/2

√
βω(pi)

L∏
j=1

e−ν̃(qj )/2√
βω(qj )

F
({p}∣∣{q}).

The overall factor̃ξT and the functioñν(q) from the leg factors are determined from the scaling limit of (4), (5

(10)ln ξ̃T = m2β2

2π2

∞∫
0

∞∫
0

dpdq ω′(p)ω′(q)

sinh(βω(p))sinh(βω(q)
ln

∣∣∣∣p + q

p − q

∣∣∣∣,

(11)ν̃(q) = 1

π

∞∫
−∞

dpω(q)

p2 + q2 + m2
lncoth

βω(p)

2
,

β denotes the scaled length of the base of the cylinder, NS-momenta are quantized aspj = 2π
β

lj , lj ∈ Z+ 1
2, while

for R-momenta we haveqj = 2π
β

lj andlj ∈ Z.

3. General formula

On the level of form factorsNS〈∅|σ |{q}〉R the expression (9) represents nothing new and can even be p
rigorously—it is simply a particular case of (3). However, this conjecture givesall matrix elements, though onl
in the scaling limit. Moreover, the structure of this representation is so transparent that the lattice gener
immediately suggests itself. To be more precise, having taken into account the correspondence betwee
(9), we propose the following general formula for spin matrix elements on finite periodic lattice:

NS〈p1, . . . , pK |σ |q1, . . . , qL〉R =√
ξξT

K∏
i=1

eν(pi)/2

√
N sinhγ (pi)

L∏
j=1

e−ν(qj )/2√
N sinhγ (qj )

∏
1�i<j�K

sin
pi−pj

2

sinhγ (pi)+γ (pj )

2

(12)×
∏

1�i<j�L

sin
qi−qj

2

sinh
γ (qi)+γ (qj )

2

∏
1�i�K
1�j�L

sinh
γ (pi)+γ (qj )

2

sin pi−qj

2

,

whereξT, ν(q) are defined by (4) and (5). All previous results can be easily obtained from this express
appropriate limits. However, we have not yet found a rigorous proof of (12). Instead, since this formula
hold even on the finite lattice, we have verified it explicitly for smallN .

As an illustration, let us consider 3-row Ising chain in the ferromagnetic region of temperature parameters > 1).
In this case NS (R) momenta take on the valuesπ , π/3, −π/3 ( 0, 2π/3, −2π/3). Each state contains either tw
particles or no particles at all. Since the integrals (4) and (5) can be alternatively written as

ξ 4
T =

∏(R)
q

∏(NS)
p sinh2 γ (q)+γ (p)

2∏(R)∏(R) sinhγ (q)+γ (p)∏(NS)∏(NS) sinhγ (q)+γ (p)
, ν(q) = ln

∏(NS)
p sinhγ (q)+γ (p)

2∏(R) sinhγ (q)+γ (p)
,

q p 2 q p 2 p 2
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then to verify (12) it suffices to prove ten relations:

NS〈∅|σ |∅〉2
R = sinh

γ0+γπ/3
2 sinh

γπ+γ2π/3
2 sinh2 γπ/3+γ2π/3

2

sinhγ2π/3 sinhγπ/3 sinh
γ0+γ2π/3

2 sinh
γπ+γπ/3

2

,

NS〈−π/3,π/3|σ |2π/3,−2π/3〉2
R = sinh

γ0+γ2π/3
2 sinh

γπ+γπ/3
2 sinh2 γπ/3+γ2π/3

2

9 sinhγ2π/3 sinhγπ/3 sinh
γ0+γπ/3

2 sinh
γπ+γ2π/3

2

,

NS〈∅|σ |2π/3,−2π/3〉2
R = sinh

γ0+γπ/3
2 sinh

γ0+γ2π/3
2

12 sinhγ2π/3 sinhγπ/3 sinh
γπ+γπ/3

2 sinh
γπ+γ2π/3

2 sinh2 γπ/3+γ2π/3
2

,

NS〈−π/3,π/3|σ |∅〉2
R = sinh

γπ+γπ/3
2 sinh

γπ+γ2π/3
2

12 sinhγ2π/3 sinhγπ/3 sinh
γ0+γπ/3

2 sinh
γ0+γ2π/3

2 sinh2 γπ/3+γ2π/3
2

,

NS〈∅|σ |0,2π/3〉2
R = NS〈∅|σ |0,−2π/3〉2

R = 1

12 sinhγ0+γπ

2 sinh
γ0+γπ/3

2 sinh
γπ+γπ/3

2 sinhγπ/3
,

NS〈−π/3,π |σ |∅〉2
R = NS〈π/3,π |σ |∅〉2

R = 1

12 sinhγ0+γπ

2 sinh
γ0+γ2π/3

2 sinhγ2π/3 sinh
γπ+γ2π/3

2

,

NS〈−π/3,π/3|σ |0,2π/3〉2
R = NS〈 − π/3,π/3|σ |0,−2π/3〉2

R = 4 sinh
γ0+γπ/3

2 sinh
γπ+γπ/3

2

9 sinhγπ/3 sinhγ0+γπ

2

,

NS〈−π/3,π |σ |2π/3,−2π/3〉2
R = NS〈π/3,π |σ |2π/3,−2π/3〉2

R = 4 sinh
γ0+γ2π/3

2 sinh
γπ+γ2π/3

2

9 sinhγ2π/3 sinhγ0+γπ

2

,

NS〈−π/3,π |σ |0,2π/3〉2
R = NS〈π/3,π |σ |0,−2π/3〉2

R = 1

9
,

NS〈−π/3,π |σ |0,−2π/3〉2
R = NS〈π/3,π |σ |0,2π/3〉2

R = 4

9
.

This indeed can be done—with a little bit cumbersome but straightforward calculation.1 We have performed
similar check for smallN up toN = 4 and we have no doubt in the validity of (12) for arbitraryN . The rigorous
proof of this formula will complete, in a sense, the study of the 2D Ising model in zero field.
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