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Spin matrix elements in 2D Ising model on the finite lattice
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Abstract

We present the explicit formulas for all spin matrix elements in 2D Ising model with the nearest neighbor interaction on
the finite periodic square lattice. These expressions generalize the known results [Phys. Rev. D 19 (1979); hep-th/0107117;
J. Stat. Phys. 110 (2003)] (coincide with them in the appropriate limits) and fulfill the test of straightforward transfer matrix
calculations for finitev.
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1. Eigenvaluesand eigenvectorsof transfer matrix

It is well known (see [7,8]) that the spectrum df % 2V transfer matrix, corresponding to Ising model on the
periodic square lattice, consists of two sets:

A= (ZS)N/ZeXp{%(j:y(O) +y@2r/N)£---+y(2r — Zn/N))}, 1)

A= (25)N/? exp{%(iy(n/N) +y@Brn/N)£---+y(@2r — n/N))}, (2)

wheres = sinh 2C and K is the Ising coupling constant. The functiprig) is defined as the positive root of the
equation
coshy (q) =s +s 1 —cosg,

which is the lattice analog of the relativistic energy dispersion law. The number of minuses in (1) is even in
ferromagnetic{ > 1) and odd in paramagnetic €Os < 1) phase, while the number of minuses in (2) is even in
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both phases. The eigenvalues (1) (or (2)) correspond to eigenvectors that are odd (respectively, even) under spin
reflection.

The notation and terminology, introduced in [6] for the analysis of continuum limit, are also very convenient on
the lattice. In what follows, odd and even eigenvectors of Ising transfer matrix will be interpreted as multiparticle
states from the Ramond and Neveu—Schwartz sector. Quasimomenta of R-particles can be %}qﬂa(ljt&
0,1,..., N — 1), while for NS-particles they take on the valu?;gs(j + %) (j=0,1,..., N —1). Each eigenstate
consists of particles of only one type, and their quasimomenta must be different.

We will denote byips, ..., px)nsr) Normalized eigenstate, containing particles with the momenta ., pg.

Since R-sector in paramagnetic phase contains the Kigie(one particle with zero momentum), it will be
convenient to denote NS and R vacua/@yns and|d)r. The goal of the present Letter is to find matrix elements
Ns(p1, ---» Pxlolql, - .-, qr)r Of the Ising spino in the described basis of normalized eigenstates. (R-R and
NS—-NS matrix elements vanish dueZg-symmetry of the model.)

2. Latticeform factorsand scaling limit

All n-point correlation functions in the Ising model on the cylinder and torus can be easily expressed via spin
matrix elements. However, known results were obtained in rather inverse way. At the first stage, 2-point functions
are expressed through the determinants of certain Toeplitz matrices with a size that depends on the separation of
correlating spins. To extract the analytic dependence on distance from these representations, a lot of further work
was needed [2]. The final answer [3,4] allows to calculate squared form factors on the cylinder (on the infinite
lattice the above program was realized earlier in [9,10,12]):
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Hereg = |1 —s—4|/4, quasimomenta have discrete R-values and cylindrical parangeter§;) are given by
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In the thermodynamic limilV — oo these parameters vanish (— 1, v(¢) — 0) and (3) transforms into classical

formula [10,12]:
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where{g;} can take on arbitrary values in the interjalr, 7 ].

In the scaling limit, Ising model on the plane was shown to be equivalent to a relativistic quantum field theory
with two-particleS-matrix equal to—1 (see [11]). Then it became possible to use the results of [1] and to calculate
all spin matrix elements:
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Fiptay = [] =22 [ %224 1] M @®)

1<i<j<K w(pi) +o(pj) 1<i<i<L w(qi) +o(q;) 1<ick P
1L
Herew(q) = /m?+ g2 and the momenta of both type of particles take on arbitrary real values. The RHS of (7) is

usually written with the facto %" , but it can be removed by the change of the basis and will be omitted in what
follows.

Very recently, Fonseca and Zamolodchikov [6] announced and promised to give the proof of a similar formula
for the scaling limit on the cylinder:

— K w2 L —ig)/2
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The overall factoér and the functiori(q) from the leg factors are determined from the scaling limit of (4), (5)
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B denotes the scaled length of the base of the cylinder, NS-momenta are quangizesd %lj, l; € Z+ %, while
for R-momenta we havg; = &1 andi; € Z.

3. General formula

On the level of form factorss(d|o|{q})r the expression (9) represents nothing new and can even be proven
rigorously—it is simply a particular case of (3). However, this conjecture gillematrix elements, though only
in the scaling limit. Moreover, the structure of this representation is so transparent that the lattice generalization
immediately suggests itself. To be more precise, having taken into account the correspondence between (3) and
(9), we propose the following general formula for spin matrix elements on finite periodic lattice:
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whereé&t, v(g) are defined by (4) and (5). All previous results can be easily obtained from this expression in
appropriate limits. However, we have not yet found a rigorous proof of (12). Instead, since this formula should
hold even on the finite lattice, we have verified it explicitly for small
As anillustration, let us consider 3-row Ising chain in the ferromagnetic region of temperature parametgr (

In this case NS (R) momenta take on the valwes /3, —7/3 (0, 2r/3, —27/3). Each state contains either two
particles or no particles at all. Since the integrals (4) and (5) can be alternatively written as
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then to verify (12) it suffices to prove ten relations:
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Ns(—7/3, 7|0 |0, 27 /3)2 = ns(/3, |0 |0, —27/3)3 =

Ol Ol

Ns(—7/3, 7|0 |0, =27 /3)3 = ns(m/3, 7|0 |0, 27/3)% =

This indeed can be done—with a little bit cumbersome but straightforward calculaiMmhave performed a
similar check for smallV up to N = 4 and we have no doubt in the validity of (12) for arbitra¥y The rigorous
proof of this formula will complete, in a sense, the study of the 2D Ising model in zero field.
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