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de Tours, 37200 Tours, France
3 Department of Physics, Kyiv National University, 03022, Kyiv, Ukraine

E-mail: iorgov@bitp.kiev.ua, lisovyi@lmpt.univ-tours.fr

Abstract. We outline recent developments relating Painlevé equations and 2D confor-
mal field theory. Generic tau functions of Painlevé VI and Painlevé III3 are written as
linear combinations of c = 1 conformal blocks and their irregular limits. This provides
explicit combinatorial series representations of the tau functions, and helps to establish
connection formula for the tau function in the Painlevé VI case.

1. Introduction

Painlevé equations [4, 5, 10] have long been a major research subject. After their discovery

at the turn of 20th century, a new surge of interest emerged in the seventies owing to

the development of the inverse scattering method and various applications in integrable

models and random matrix theory.

The important progress achieved since then in the study of geometric and analytic

properties of Painlevé equations is mainly due to their intimate relation to monodromy

preserving deformations of systems of linear ODEs with rational coefficients. It is now

known that Painlevé transcendents share many properties of the classical special functions,

including reasonably simple transformation properties and connection formulas. The main

difference is the absence of explicit series/integral representations of Painlevé functions

and their lacking representation-theoretic interpretation.

However, it was recently observed in [13, 14] that the tau functions of Painlevé VI, V

and III can be simply expressed in terms of conformal blocks of the Virasoro algebra with

the central charge c = 1 and their irregular limits. These observations appear even more

intriguing in the light of AGT correspondence [2] which provides explicit combinatorial

series representations for conformal blocks and, consequently, complete critical expansions

of the corresponding Painlevé functions.

The results of [13, 14] beg for conceptual explanation. The present paper attempts to

initiate the study of algebraic stuctures behind Painlevé equations in the hope that their
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understanding will eventually lead to a rigorous proof of conformal expansions. Focusing

on the simplest Painlevé III3 case, we will show that these expansions are equivalent

to certain bilinear differential identities for conformal blocks (given by the squares of

Whittaker vectors in the case at hand).

Our second aim is to illustrate the use of conformal expansions by finding a

connection formula for generic Painlevé VI tau function. Although connection problem for

classical Painlevé VI transcendents was essentially solved in [17], its tau function version

involves their quadratures and therefore looks much more complicated. In the context of

random matrix theory, connection coefficients of this type arise in the study of large gap

asymptotics for integrable kernels and are called Dyson constants, see e.g. [6, 7, 9, 20].

The organization of the paper is as follows. In Section 2, we recall how conformal

blocks arise in 2D CFT and explain two ways of their computation: direct approach based

on the inversion of the Kac-Shapovalov matrix, and AGT combinatorial representation.

We also briefly outline the algebraic setting leading to the notion of irregular conformal

blocks. In Section 3, we recall Jimbo asymptotic formula, expressing the critical

asymptotics of Painlevé VI tau function in terms of monodromy data, and describe its

all-order analog using c = 1 Virasoro conformal blocks. Section 4 explains how the proof

of such critical expansions can be reduced to showing certain bilinear identities satisfied

by conformal block functions. Finally, Section 5 contains a sketch of the derivation of

connection coefficient for generic Painlevé VI tau function.

2. Computation of conformal blocks

2.1. CFT basics

The main objective of 2D conformal field theory [3, 8, 27] is the calculation of correlation

functions of local fields, and one of its nicest features is that the correlators are almost

completely fixed by the underlying symmetry.

The space of local fields contains a (possibly infinite and uncountable) set of chiral

primary fields O characterized by their conformal dimensions ∆ ∈ C. Such fields

transform as holomorphic forms of weight ∆ under conformal transformations. In addition

to primaries, the theory also contains their descendants obtained by successive operator

product expansions (OPE) with a specific field T called the energy-momentum tensor. In

this paper, we will be exclusively interested in the fields living on the Riemann sphere P1.

In the algebraic formulation of CFT, local fields correspond to states in the highest

weight representations of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
n
(
n2 − 1

)
δn+m,0, m, n ∈ Z. (2.1)

One assigns to every primary field O a highest weight vector |∆〉 and its dual 〈∆| such

that L0|∆〉 = ∆|∆〉, 〈∆|L0 = 〈∆|∆ and Ln|∆〉 = 0, 〈∆|L−n = 0 for any n > 0. It
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is also common to choose an orthonormal basis of primaries so that 〈∆j|∆k〉 = δjk.

The descendant fields L−λO are associated to the states L−λ|∆〉 = L−λN . . . L−λ1|∆〉
obtained by the action of lowering operators. As one can always achieve the ordering

λ1 ≥ λ2 ≥ . . . ≥ λN > 0 using the commutation relations (2.1), the descendant states

may be indexed by partitions identified with Young diagrams. Let Y denote the set of all

partitions. The size |λ| =
∑N

k=1 λk of λ ∈ Y is called the level of descendant L−λO.

The computation of correlation functions is based on the systematic use of OPEs

and the possibility to express correlation functions involving descendant fields in terms of

correlators of the corresponding primaries. For instance, the OPE of two primary fields

O1 and O2 has the form

O2(t)O1(0) =
∑
α

Cα21

∑
λ∈Y

βλ (∆α,∆2,∆1) t∆α−∆1−∆2+|λ|L−λOα (0) , (2.2)

where the index α labels possible intermediate conformal families and Cα21 =

〈Oα(∞)O2(1)O1(0)〉 denotes the three-point function of O1, O2, Oα.

The coefficients βλ (∆α,∆2,∆1) of the OPE algebra can be determined by equating

correlation functions of both sides of (2.2) with the descendant L−µOα(∞):

βλ (∆α,∆2,∆1) =
∑
µ∈Y

[Q (∆α)]−1
λµγµ (∆α,∆2,∆1) . (2.3)

Here Qλµ (∆) is the so-called Kac-Shapovalov matrix involving two-point functions of

descendant states,

Qλµ (∆) = 〈∆|Lλ1 . . . LλNL−µM . . . L−µ1|∆〉, (2.4)

where M and N denote the lengths of the partitions µ and λ. The quantity γµ (∆,∆2,∆1)

is related to three-point function involving one descendant and is known in explicit form:

γµ (∆,∆2,∆1) =
M∏
j=1

(
∆−∆1 + µj∆2 +

j−1∑
k=1

µk

)
. (2.5)

Replacing the products of fields by the OPEs (2.2), one can express any correlator

in terms of (non-universal) three-point functions and conformal blocks — the functions

which do not depend on a specific model. In the simplest nontrivial case of four-point

correlation function

〈O4(∞)O3(1)O2(t)O1(0)〉 =
∑
α

C43αCα21t
∆α−∆1−∆2Fc (∆1,∆2,∆3,∆4,∆α; t) , (2.6)

conformal block is explicitly given by

Fc (∆1,∆2,∆3,∆4,∆; t) =
∑
λ,µ∈Y

γλ (∆,∆3,∆4) [Q (∆)]−1
λµγµ (∆,∆2,∆1) t|λ|. (2.7)

It is often convenient to include the prefactor t∆α−∆1−∆2 in (2.6) into the definition of

conformal block. To distinguish between the two conventions, we define

F̄c (∆1,∆2,∆3,∆4,∆; t) = t∆−∆1−∆2Fc (∆1,∆2,∆3,∆4,∆; t) , (2.8)
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where the fractional powers here and below will always be understood as defined by the

principal branches.

The function (2.7) depends on 6 parameters: four external dimensions ∆1,2,3,4, one

intermediate dimension ∆ and the central charge c. Although not much is rigorously

proven about convergence of the series (2.7) and its analytic behaviour, it is expected

that the only branch points of Fc on the Riemann sphere are 0, 1 and ∞.

2.2. Direct approach

The previously introduced descendant states diagonalize the operator L0:

L0L−λ|∆〉 = (∆ + |λ|)L−λ|∆〉, 〈∆|LλL0 = (∆ + |λ|) 〈∆|Lλ.

Therefore, Kac-Shapovalov matrix (2.4) is block-diagonal; the only non-vanishing scalar

products correspond to descendants from the same level. This allows to compute confor-

mal block function (2.7) order by order using Virasoro commutation relations.

For instance, bringing all Ln<0 in (2.4) to the left and all Ln>0 to the right, we easily

determine non-zero elements of Q(∆) for levels 1 and 2:

Q (∆) = 2∆,

Q (∆) = 4∆ +
c

2
,

Q (∆) = Q (∆) = 6∆,

Q (∆) = 4∆ (2∆ + 1) .

(2.9)

Also, from (2.5) we deduce that
γ (∆,∆2,∆1) = ∆−∆1 + ∆2,

γ (∆,∆2,∆1) = ∆−∆1 + 2∆2,

γ (∆,∆2,∆1) = (∆−∆1 + ∆2) (∆−∆1 + ∆2 + 1) .

(2.10)

Substituting (2.9)–(2.10) into the series (2.7) and computing the inverses of the

corresponding blocks of Q(∆), one arrives at

Fc (∆1,∆2,∆3,∆4,∆; t) = 1 +
(∆−∆1 + ∆2) (∆−∆4 + ∆3)

2∆
t+

+

[
(∆−∆1 + ∆2) (∆−∆1 + ∆2 + 1) (∆−∆4 + ∆3) (∆−∆4 + ∆3 + 1)

2∆ (1 + 2∆)
+ (2.11)

+
(1 + 2∆)

(
∆1 + ∆2 + ∆(∆−1)−3(∆1−∆2)2

1+2∆

)(
∆4 + ∆3 + ∆(∆−1)−3(∆4−∆3)2

1+2∆

)
(1− 4∆)2 + (c− 1) (1 + 2∆)

]
t2

2
+O

(
t3
)
.

There is no explicit formula expressing generic four-point conformal block in terms of

known special functions. However, for some special values of central charge and conformal
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dimensions Fc can be computed in a closed form. One of such cases corresponds to the

limit c→∞, in which the Virasoro algebra boils down to sl(2)-algebra generated by L0,

L±1 and conformal block is given by the Gauss hypergeometric function,

F∞ (∆1,∆2,∆3,∆4,∆; t) = 2F1 (∆−∆1 + ∆2,∆−∆4 + ∆3; 2∆; t) .

Unfortunately, the computation of coefficients of Fc becomes very cumbersome for

large powers of t even with the use of computer algebra. One way to circumvent these

difficulties is provided by Zamolodchikov recursive formulas [24, 26]. The next subsection

describes yet another approach to this problem.

2.3. AGT representation

It has been recently observed [2] and proved [1] that conformal blocks of 2D CFT

coincide with instanton partition functions in 4D N = 2 supersymmetric gauge theories.

Mathematically this 2D/4D duality (usually referred to as AGT correspondence) is related

to geometric realization of representations of the Virasoro algebra using equivariant

cohomology of the moduli spaces of SU(2)-instantons.

One of the immediate practical consequences of the AGT relation is an explicit

combinatorial representation for Fc (∆1,∆2,∆3,∆4,∆; t). To write it down, it is

convenient to parameterize the central charge and conformal dimensions as

c = 1− 6Q2, Q = β − β−1, ∆ =
c− 1

24
+ σ2, (2.12)

∆k =
c− 1

24
+ θ2

k, k = 1, . . . , 4. (2.13)

Then [1, 2] four-point conformal block on P1 is given by the following double sum over

partitions:

Fc (∆1,∆2,∆3,∆4,∆; t) = (1− t)2(θ2+Q/2)(θ3+Q/2)
∑
λ,µ∈Y

Fλ,µ(~θ, σ, β) t|λ|+|µ|, (2.14)

Fλ,µ(~θ, σ, β) =
∏

(i,j)∈λ

Eij(θ1, θ2, σ)Eij(−θ1, θ2, σ)Eij(θ4, θ3, σ)Eij(−θ4, θ3, σ)

Fij(0|λ, λ)Fij(σ|λ, µ)
× (2.15)

×
∏

(i,j)∈µ

Eij(θ1, θ2,−σ)Eij(−θ1, θ2,−σ)Eij(θ4, θ3,−σ)Eij(−θ4, θ3,−σ)

Fij(0|µ, µ)Fij(−σ|µ, λ)
.

The products in the last formula are taken over the boxes (i, j) of Young diagrams

associated to λ, µ ∈ Y, the functions Eij, Fij are defined by

Eij(θ, θ
′, σ) = θ + θ′ + σ + βi− β−1j − Q

2
, (2.16)

Fij(σ|λ, µ) =

[
β

(
λ′j − i+

1

2

)
+ β−1

(
µi − j +

1

2

)
+ 2σ

]2

− Q2

4
, (2.17)
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and λ′ denotes the partition conjugate to λ. Although the number of bipartitions (λ, µ)

of fixed size N = |λ|+ |µ| grows rather rapidly (∼
4√3

12N5/4 exp 2π
√

N
3

), the formulas (2.14)–

(2.15) provide a very efficient tool of computation of the coefficients of conformal block

series.

2.4. Chain vector representation and irregular limit

There exists yet another way to represent conformal block, which follows from (2.7).

Consider a sequence of states |n〉, n ∈ Z in the weight representation of the Virasoro

algebra defined by the following conditions:

|0〉 = |∆〉, |n < 0〉 = 0, (2.18)

Lk|n〉 = ξn,k|n− k〉 ∀k > 0, (2.19)

with some coefficients ξn,k ∈ C. For the conditions (2.18)–(2.19) to be compatible with

the Virasoro commutation relations (2.1), these coefficients should satisfy the relations

ξn−k2,k1ξn,k2 − ξn−k1,k2ξn,k1 = (k1 − k2)ξn,k1+k2 .

It is straightforward to check that these relations have a two-parameter solution

ξn,k =

{
∆−∆1 + k∆2 + n− k, k ≤ n,

0, k > n.

In fact, it can be shown that there are no other solutions. Moreover, if we denote the

corresponding states as |n〉12, then conformal block (2.7) can be written as

Fc (∆1,∆2,∆3,∆4,∆; t) =
∞∑
n=0

43〈n|n〉21 t
n. (2.20)

The above construction simplifies in the irregular limit [12]

∆1,4 →∞, t→ t

∆1∆4

. (2.21)

Rescaling the states as |n〉 → (−∆1)n|n〉, the conditions (2.18)–(2.19) transform into

|0〉 = |∆〉, L1|n〉 = |n− 1〉, L2|n〉 = 0. (2.22)

Observe that (2.22) and (2.1) automatically imply that Lk|n〉 = 0 for k > 2.

The limit of the conformal block series yields

Fc (∆; t) =
∞∑
n=0

〈n|n〉 tn = W 〈∆|∆〉W , (2.23)

where the state |∆〉W =
∑∞

n=0 t
n
2 |n〉 is called the Whittaker vector. It has the obvious

properties

L1|∆〉W =
√
t |∆〉W , L2|∆〉W = 0, (2.24)
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which are equivalent to the conditions (2.22). Irregular conformal block thus coincides

with the norm of this particular state.

Combinatorial representation for Fc (∆; t) can be obtained by taking the appropriate

limit of AGT series (2.14)–(2.15). Explicitly,

Fc (∆; t) =
∑
λ,µ∈Y

t|λ|+|µ|∏
(i,j)∈λ Fij(0|λ, λ)Fij(σ|λ, µ)

∏
(i,j)∈µ Fij(0|µ, µ)Fij(−σ|µ, λ)

, (2.25)

where Fij(σ|λ, µ) are defined by the same formulas (2.17).

3. Painlevé VI

3.1. General

The most natural framework for Painlevé equations is the theory of monodromy preserving

deformations. Consider, for instance, the rank 2 linear system with four regular singular

points on P1 at 0, t, 1,∞,

dY

dz
=

(
A0

z
+

At
z − t

+
A1

z − 1

)
Y, (3.1)

where the matrices A0,t,1 ∈ sl2(C) are independent of z. The fundamental matrix solution

Y (z) is multivalued on P1\{0, t, 1,∞}. The fundamental group π1(P1\{0, t, 1,∞}) is

generated by the loops γν (ν = 0, t, 1,∞) shown in Fig. 1, to which we associate

monodromy matrices Mν ∈ SL(2,C).

Fig. 1

As is well-known [5], isomonodromy condition for (3.1) translates into a system of

matrix ODEs:

dA0

dt
=

[At, A0]

t
,

dA1

dt
=

[At, A1]

t− 1
. (3.2)

where A0,t,1 are also subject to the constraint A0 +At+A1 = −A∞ = const. The Lax form

of these equations implies that the eigenvalues ±θν of Aν (ν = 0, t, 1,∞) are conserved.
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Now consider the function

ζ(t) = (t− 1) TrA0At + tTrAtA1. (3.3)

Differentiating it twice with the help of (3.2), we find that

ζ ′(t) = TrA0At + TrAtA1, (3.4)

ζ ′′(t) =
Tr [A0, At]A1

t(1− t)
. (3.5)

But since for any triple of traceless 2× 2 matrices A0,t,1 one has

(Tr [A0, At]A1)2 = −2 det

 TrA2
0 TrA0At TrA0A1

TrAtA0 TrA2
t TrAtA1

TrA1A0 TrA1At TrA2
1

 ,

the relations (3.3)–(3.5) imply that the function ζ(t) satisfies the σ-form of Painlevé VI

equation (
t(t− 1)ζ ′′

)2

= (3.6)

= −2 det

 2θ2
0 tζ ′ − ζ ζ ′ + θ2

0 + θ2
t + θ2

1 − θ2
∞

tζ ′ − ζ 2θ2
t (t− 1)ζ ′ − ζ

ζ ′ + θ2
0 + θ2

t + θ2
1 − θ2

∞ (t− 1)ζ ′ − ζ 2θ2
1


Below we will mostly work with the tau function of Painlevé VI which is related to ζ(t) by

ζ(t) = t (t− 1)
d

dt
ln τ(t). (3.7)

The only branch points of τ(t) are 0, 1, ∞ and it can be analytically continued to the

universal covering P1\{0, 1,∞}.
Our aim is to construct the general solution for τ(t) in terms of monodromy of the

associated linear system (3.1). The six-dimensional space of monodromy data consists of

conjugacy classes of triples (M0,Mt,M1); note that M∞ = (M1MtM0)−1. It encodes four

Painlevé VI parameters via

pν = TrMν = 2 cos 2πθν , ν = 0, t, 1,∞, (3.8)

and two integration constants via quadratic invariants

pµν = 2 cos 2πσµν = TrMµMν , µν = 0t, 1t, 01. (3.9)

The quantities (3.8)–(3.9) satisfy the relation J(p0t, p1t, p01) = 0, where

J(p0t, p1t, p01) = p0tp1tp01 + p2
0t + p2

1t + p2
01 − ω0tp0t − ω1tp1t − ω01p01 + ω4 − 4, (3.10)

with the coefficients ω0t, ω1t, ω01, ω4 given by

ω0t = p0pt + p1p∞,

ω1t = ptp1 + p0p∞,

ω01 = p0p1 + ptp∞,

ω4 = p0ptp1p∞ + p2
0 + p2

t + p2
1 + p2

∞.



Painlevé functions and conformal blocks 9

The starting point of our construction is based on the Jimbo asymptotic formula [17],

which relates the asymptotics of τ(t) near the critical points to monodromy data. Before

we suitably reformulate this result, let us introduce a suggestive notation ∆σ = σ2 and

∆ν =
1

2
TrA2

ν = θ2
ν , ν = 0, t, 1,∞.

Theorem 1. Under assumptions that

θ0, θt, θ1, θ∞ /∈ Z/2,

|Reσ0t| <
1

2
, σ0t 6= 0,

θt + εθ0 + ε′σ0t, θ1 + εθ∞ + ε′σ0t /∈ Z, ε, ε′ = ±1,

the tau function τ(t) has the following asymptotics as t→ 0:

τ(t) = const ·
{
C
[ θ1 θt
θ∞ θ0

;σ0t

]
t∆σ0t−∆0−∆t

(
1 +

(∆σ0t −∆0 + ∆t) (∆σ0t −∆∞ + ∆1)

2∆σ0t

t

)
+

+C
[ θ1 θt
θ∞ θ0

;σ0t − 1
]
s−1

0t t
∆σ0t−1−∆0−∆t +

+C
[ θ1 θt
θ∞ θ0

;σ0t + 1
]
s0t t

∆σ0t+1−∆0−∆t +

+O
(

max{t∆σ0t+1−∆0−∆t+1, t∆σ0t−1−∆0−∆t+1}
)}

, (3.11)

where

s0t =
(ω1t − 2p1t − p0tp01)− (ω01 − 2p01 − p0tp1t) e

2πiσ0t

(2 cos 2π(θt − σ0t)− p0) (2 cos 2π(θ1 − σ0t)− p∞)
, (3.12)

C
[ θ1 θt
θ∞ θ0

;σ
]

=

∏
ε,ε′=±G(1 + θt + εθ0 + ε′σ)G(1 + θ1 + εθ∞ + ε′σ)∏

ε=±G(1 + 2εσ)
,

and G(z) denotes the Barnes G-function.

A few comments are in order:

• Two Painlevé VI integration constants correspond to the parameters σ0t and s0t in

the asymptotic formula. The first one is present already in the leading term, whereas

the second appears in subleading orders (2nd and 3rd line of (3.11)).

• Fixing p0t in the relation J(p0t, p1t, p01) = 0, one obtains a quadric in p1t, p01. The

quantity s0t defined by a somewhat obscure formula (3.12) is in fact a uniformizing

parameter on this quadric.

• Barnes G-function may be defined as the infinite product

G (1 + z) = (2π)
z
2 exp

(
−z + z2 (1 + γ)

2

) ∞∏
k=1

(
1 +

z

k

)k
exp

(
z2

2k
− z
)
,
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or using analytic continuation of the integral representation

G(1 + z) = (2π)
z
2 exp

∫ ∞
0

ds

s

[
1− e−zs

4 sinh2 s
2

− z

s
+
z2

2
e−s
]
, Re z > −1.

It is essentially characterized by the recurrence relation G(z + 1) = Γ(z)G(z) and

normalization G(1) = 1.

3.2. Critical expansions

As far as the leading behaviour of τ(t) is known, next terms of the critical expansion

at t = 0 can be computed iteratively using Painlevé VI equation (3.6). The attentive

reader may have already spotted a similarity between the first line of (3.11) and the

first nontrivial coefficient in the conformal block expansion (2.11). This is not a mere

coincidence: it was observed in [13, 14] that subsequent terms are reproduced by the

ansatz

τ(t) = χ0

∑
n∈Z

C
[ θ1 θt
θ∞ θ0

;σ0t + n
]
sn0t F̄1 (∆0,∆t,∆1,∆∞,∆σ0t+n; t) , (3.13)

where F̄1 is the c = 1 conformal block defined by (2.8), and χ0 is an arbitrary constant

related to the obvious inherent ambiguity of the tau function definition (3.7). Being

combined with (2.7) or (2.14)–(2.15), the sum (3.13) gives an explicit series representation

for the general solution of Painlevé VI.

Since the critical points 0, 1,∞ play completely analogous roles in Painlevé VI, one

can write similar expansions at t = 1 and t =∞. In particular,

τ(t) = χ1

∑
n∈Z

C
[ θ0 θt
θ∞ θ1

;σ1t + n
]
sn1t F̄1 (∆1,∆t,∆0,∆∞,∆σ1t+n; 1− t) , (3.14)

where s1t is given by a formula analogous to (3.12):

s1t =
(ω0t − 2p0t − p1tp01)− (ω01 − 2p01 − p0tp1t) e

−2πiσ1t

(2 cos 2π(θt − σ1t)− p1) (2 cos 2π(θ0 − σ1t)− p∞)
. (3.15)

Moreover, the T -symmetry of conformal blocks

Fc (∆0,∆t,∆1,∆∞,∆; t) = (1− t)∆0−∆t−∆Fc
(

∆0,∆t,∆∞,∆1,∆;
t

t− 1

)
yields a few more expansions of τ(t) with overlapping regions of validity (as the radius of

convergence of conformal block series is believed to be 1).

As explained in [13], the expansion (3.13) can be derived from physical considerations

by identifying the isomonodromic tau function with a chiral correlation function of

monodromy fields associated with the regular singular points of the linear system (3.1).

Moreover, such an identification is valid for arbitrary rank and any number of singularities.

Monodromy fields are Virasoro primaries with conformal dimensions ∆ν = 1
2
TrA2

ν . The
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central charge c = 1 in rank 2 arises from the identification of underlying CFT with ŝu(2)1

WZW theory. The series (3.13) is nothing but the conformal expansion (2.6): the integer

n labels conformal families which can occur in the OPE of two monodromy fields, and

their dimensions (σ0t + n)2 are related to the conservation of monodromy.

By now the expansion (3.13) is very thoroughly tested both analytically and

numerically. Solution of the recurrence relations for the coefficients of asymptotic

expansion derived from Painlevé VI equation (3.6) was compared with the corresponding

conformal block contributions for levels up to 10. This corresponds to checking more

then 30 first terms in the expansion while keeping all parameters arbitrary. Numerical

experiments with random parameter values show that critical expansions at different

branch points glue together to smooth global solutions of Painlevé VI.

Conformal expansions can also be checked to arbitrary order for special values of
~θ = (θ0, θt, θ1, θ∞) and ~σ = (σ0t, σ1t, σ01) for which Painlevé VI solutions may be written

in a closed form. For instance, the choice ~θ =
(

1
4
, 1

4
, 1

4
, 1

4

)
corresponds to Picard elliptic

solutions [18] on Painlevé VI side and Ashkin-Teller conformal blocks [25] on the CFT

side. The rest of this subsection is devoted to another example, representing a particular

case of the so-called Riccati solutions.

Consider an N ×N Toeplitz determinant

DN(z, z′; t) = det [Aj−k(z, z
′; t)]

N−1

j,k=0 (3.16)

with the symbol

(1 +
√
tζ)z(1 +

√
t ζ−1)z

′
=
∑
k∈Z

Ak(z, z
′; t) ζk.

According to Gessel’s theorem [15, 23], this determinant can be interpreted as the

distribution function of the first row of the random Young diagram distributed according

to a z-measure. Explicitly,

DN(z, z′; t) =
∑

λ∈Y|λ1≤N

t|λ|
∏

(i,j)∈λ

(i− j + z)(i− j + z′)

h2
λ(i, j)

, (3.17)

where hλ(i, j) = λi + λ′j − i− j + 1 denotes the hook length of the box (i, j) ∈ λ.

On the other hand, it is known (see e.g. [11]) that the determinant (3.16) is simply

related to a Painlevé VI tau function with parameters ~θ =
(
0, N

2
,−N+z+z′

2
, z−z

′

2

)
and

~σ =
(
N
2
, z+z

′

2
, N+z−z′

2

)
:

τ(t) = (1− t)−
N(N+z+z′)

2 DN(z, z′; t).

It turns out [14] that in this case the expansion (3.13) contains only one conformal block

and its AGT representation (2.14)–(2.15) exactly reproduces combinatorial formula (3.17).
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4. Irregular limit and bilinear relations

It is clear that the proof of conformal expansion (3.13) of Painlevé VI tau function reduces

to showing certain differential identities satisfied by c = 1 conformal blocks. Below we

work out the details of this statement in a simpler situation of irregular conformal blocks

of Subsection 2.4.

In the irregular limit ∆0,∞ → ∞, t → t/(∆0∆∞), cf (2.21), Painlevé VI equation

(3.6) simplifies to

(tζ ′′)
2

= 4 (ζ ′)
2

(ζ − tζ ′)− 4ζ ′. (4.1)

This is the sigma form of Painlevé III equation of type D8 [22], which was called Painlevé

III3 in [14]. The above limit is a shortcut in a more sophisticated coalescence chain of

Painlevé equations

P
VI

P
V

P
III1

P
III2

P
III3

that can be solved using conformal expansions [14].

The equation (4.1) usually appears in the physics literature in a slightly disguised

form of the radial sinh-Gordon equation. Namely, if we introduce the function ψ(r) by

e−2ψ(r) = − r
2

64
ζ ′
(

r4

4096

)
,

then it satisfies

ψ′′ +
1

r
ψ′ =

1

2
sinh 2ψ. (4.2)

The tau function of Painlevé III3 is related to ζ(t) by

ζ(t) = t
d

dt
ln τ(t).

Substitution of this expression in (4.1) results into a complicated 3rd order quadrilinear

ODE for τ(t). However, differentiating it with respect to t, one obtains a simpler bilinear

equation

t3ττ ′′′′ + 4t2 (τ − tτ ′) τ ′′′ + 3t3 (τ ′′)
2

+ 2t (τ − 2tτ ′) τ ′′ + 2τ 2 = 0. (4.3)

Using the dilatation generator δ = t
d

dt
and the associated Hirota derivative defined by

f (eαt) g
(
e−αt

)
=
∞∑
k=0

(
Dkf · g

) αk
k!
,

the equation (4.3) can be put into a more symmetric form(
D4 + (1− 2δ)D2 + 4t

)
τ · τ = 0. (4.4)
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The analog of the conformal expansion (3.13) for Painlevé III3 is written in terms of

irregular conformal blocks (2.23), cf Subsection 4.2 in [14]. Namely, if we define

Cσ = [G(1 + 2σ)G(1− 2σ)]−1 , (4.5)

and, similarly to (2.8),

Bσ(t) = F̄1

(
σ2; t

)
= tσ

2F1

(
σ2; t

)
, (4.6)

then the conjectural general solution of Painlevé III3 is given by

τ(t) =
∑
n∈Z

Cσ+n s
n Bσ+n (t) , (4.7)

where the parameters σ and s are arbitrary and play the role of two integration constants.

Our next task is to determine what needs to be proven to show (4.7) rigorously.

Substituting (4.7) into (4.4) and equating the coefficients of different powers of s to

zero, one obtains the following infinite chain of equations∑
m,n∈Z,m+n=`

Cσ+mCσ+n

(
D4 + (1− 2δ)D2 + 4t

)
Bσ+m · Bσ+n = 0, (4.8)

which should be satisfied for any ` ∈ Z and arbitrary complex σ /∈ Z/2. However,

considering the shift σ → σ − `
2
, it becomes clear that the chain (4.8) contains only two

independent identities, namely,∑
n∈Z

Cσ+nCσ−n
(
D4 + (1− 2δ)D2 + 4t

)
Bσ+n · Bσ−n = 0 (4.9)

and the same identity with summation index n ∈ Z + 1
2
. In spite of the appearance of the

Barnes functions in the structure constants (4.5), the coefficients of the bilinear relations

(4.9) can be reduced to rational functions of σ thanks to the identity

Cσ+nCσ−n
C2
σ

=
2n−1∏

k=1−2n

(2σ − k)−2(2n−|k|) .

The identities (4.9) bear a striking resemblance, but are not equivalent, to blowup

equations of [21]. Their more cumbersome Painlevé VI analogs can be derived in a very

similar way. It should be emphasized that, although these identities would be sufficient for

the proof of critical expansions (at least at the level of formal series), they can be studied

without any reference to Painlevé theory. Moreover, once proved, they would provide an

interesting alternative way to compute the coefficients of c = 1 conformal block series.

5. Connection formula for Painlevé VI tau function

5.1. Recursion relations

Let us come back to Painlevé VI tau function and illustrate the usefulness of conformal

expansions with a result of a different nature. As already noted above, the prefactors χ0
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and χ1 in (3.13), (3.14) are indefinite. However, the connection coefficient

χ01(~θ, ~σ) = χ−1
0 χ1, (5.1)

which gives relative normalization of the asymptotics of τ(t) as t → 0 and t → 1, is

completely determined by Painlevé VI equation (3.6) and initial conditions for ζ(t).

In the applications of Painlevé equations to random matrix theory the corresponding

tau functions appear as Fredholm determinants of integrable kernels defined on some

interval (a, b) ∈ R. In most cases their asymptotics at one of the endpoints can be

easily found. It fixes the tau function normalization. The remaining (very nontrivial)

problem is to compute the constant prefactor in the asymptotics at the other endpoint.

Our connection coefficient (5.1) is an exact analog of this quantity in the case of generic

Painlevé VI tau function, where one has no distinguished normalization.

Given ~θ, σ0t and σ1t, the value of p01 which enters the tau function expansions

(3.13), (3.14) via s0t and s1t, is fixed up to the choice of solution of the equation

J (p0t, p1t, p01) = 0, cf (3.10). We therefore concentrate our attention on the dependence

of χ01 on σ0t and σ1t. The form of the expansions (3.13), (3.14) suggests two functional

relations:

χ01(σ0t + 1, σ1t)

χ01(σ0t, σ1t)
= s−1

0t , (5.2)

χ01(σ0t, σ1t + 1)

χ01(σ0t, σ1t)
= s1t, (5.3)

where s0t, s1t are defined by (3.12)–(3.15). The main difficulty of the solution of (5.2)–(5.3)

is hidden in the dependence of these quantities on p01, as the latter depends on σ0t, σ1t

in a rather complicated way. Although the equations (5.2)–(5.3) fix χ01(σ0t, σ1t) only up

to periodic function of σ0t, σ1t, this ambiguity can be resolved using explicit Painlevé VI

solutions depending on continuous parameters.

We now formulate the final result of this computation, postponing the details to a

future publication [16]. It is convenient to consider instead of χ01 the quantity

χ̄01(~θ, ~σ) = χ01(~θ, ~σ)C
[ θ0 θt
θ∞ θ1

;σ1t

]/
C
[ θ1 θt
θ∞ θ0

;σ0t

]
. (5.4)

In particular, for −1
2
< Reσ0t, Reσ1t <

1
2

one can write

χ̄01(~θ, ~σ) =
limt→1(1− t)θ2

1+θ2
t−σ2

1tτ(t)

limt→0 tθ
2
0+θ2

t−σ2
0tτ(t)

. (5.5)

Define the parameters

ν1 = σ0t + θ0 + θt, λ1 = θ0 + θt + θ1 + θ∞,

ν2 = σ0t + θ1 + θ∞, λ2 = σ0t + σ1t + θ0 + θ1,

ν3 = σ1t + θ0 + θ∞, λ3 = σ0t + σ1t + θt + θ∞, (5.6)
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ν4 = σ1t + θt + θ1, λ4 = 0,

2νΣ = ν1 + ν2 + ν3 + ν4,

and let ω denote the root z = e2πiω of the quadratic equation
4∏

k=1

(
1− ze2πiνk

)
=

4∏
k=1

(
1− ze2πiλk

)
, (5.7)

explicitly given by

z =
p01 + 2 cos 2π (σ0t − σ1t)− 2 cos 2π (θt + θ∞)− 2 cos 2π (θ0 + θ1)∑4

k=1 (e2πi(νΣ−νk) − e2πi(νΣ−λk))
.

Then the connection coefficient (5.4)–(5.5) is given by the following conjectural evaluation:

χ̄01(~θ, ~σ) =
∏
ε,ε′=±

G(1 + εσ1t + ε′θt − εε′θ1)G(1 + εσ1t + ε′θ0 − εε′θ∞)

G(1 + εσ0t + ε′θt + εε′θ0)G(1 + εσ0t + ε′θ1 + εε′θ∞)
×

×
∏
ε=±

G(1 + 2εσ0t)

G(1 + 2εσ1t)

4∏
k=1

Ĝ(ω + νk)

Ĝ(ω + λk)
, (5.8)

where, as before, G(σ) denotes Barnes G-function and Ĝ(σ) =
G(1 + σ)

G(1− σ)
. Note that the

right side of (5.8) is a periodic function of ω thanks to (5.7), and therefore the solution

of z = e2πiω may be chosen arbitrarily. It should be emphasized that we are dealing

with the generic Painlevé VI tau function; two integration constants are encoded in the

monodromy exponents σ0t, σ1t.

5.2. Algebraic example

An instructive test of the general formula (5.8) is provided by the following example.

Consider 16-branch algebraic solution (Solution 30 in [19]) characterized by the parameters
~θ =

(
1
4
, 1

4
, 1

4
, 3

8

)
. It admits rational parameterization

τ(t(s)) =
(1− s4)−

1
8 (1 + s4)−

5
192 (1 + (i− 1)s+ is2)

(−s) 1
32 (s2 − 2s− 1)

7
24 (1− 2s− s2)

1
24 (s4 + 6s2 + 1)

1
6

×

×
[
−(s2 − i)(s2 + 2is+ 1)

(s2 + i)(s2 − 2is+ 1)

] 1
8

, (5.9)

t(s) =
(s2 − 1)2(s4 + 6s2 + 1)3

32s2(s4 + 1)3
. (5.10)

Pick the solution branch corresponding to s ∈ (−1, 1 −
√

2). By (5.10), this interval is

in one-to-one correspondence with t ∈ (0, 1). Monodromy exponents ~σ =
(

1
4
, 1

6
, 1

3

)
can be

read off the tau function asymptotics near the endpoints:

τ(t→ 0) = 2
5
64 · t−

1
16

[
1 +

3

8
e−

iπ
4 t

1
2 +O(t)

]
, (5.11)

τ(t→ 1) = 2
197
576 · 3

1
64 · eiφ · (1− t)−

7
72

[
1 +O

(
(1− t)

2
3

)]
, (5.12)
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where the phase φ is a non-rational multiple of π explicitly given by

φ =
1

8

(
arctan

7

4
√

2
− π

)
. (5.13)

Now if the formula (5.8) for the connection coefficient is correct (i.e. the answer

coincides with the one provided by (5.11)–(5.12)), we should have the identity

G

[ 1
2
, 3

2
, 1

3
, 7

6
, 7

6
, 5

24
, 25

24
, 31

24
, 35

24
2
3
, 3

4
, 3

4
, 3

4
, 7

4
, 5

8
, 5

8
, 7

8
, 15

8

] 4∏
k=1

Ĝ(ω + νk)

Ĝ(ω + λk)
= 2

19
72 · 3

1
64 · eiφ, (5.14)

where G
[ α1, . . . , αm
β1, . . . , βn

]
=

∏m
k=1G(αk)∏n
k=1G(βk)

and

ω =
5

48
+

i

2π
arctanh

1

2 +
√

2 +
√

3
, (5.15)

(ν1, ν2, ν3, ν4) =

(
3

4
,
7

8
,
19

24
,
2

3

)
, (5.16)

(λ1, λ2, λ3, λ4) =

(
9

8
,
11

12
,
25

24
, 0

)
. (5.17)

Indeed, the identity (5.14) was confirmed numerically by comparison of the first 500

significant digits at both sides. Similar verifications of (5.8) have been done for more than

50 branches of about 20 exceptional algebraic Painlevé VI solutions.
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[8] Ph. Di Francesco, P. Mathieu, D. Sénéchal, Conformal field theory, Springer, (1997).
[9] T. Ehrhardt, Dyson’s constant in the asymptotics of the Fredholm determinant of the sine kernel,

Comm. Math. Phys. 262, (2006), 317–341; math/0401205 [math.FA].
[10] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents: the Riemann-
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matrices: PV I , the JUE, CyUE, cJUE and scaled limits, Nagoya Math. J. 174, (2004), 29–114;
arXiv:math-ph/0204008.

[12] D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307
[hep-th].

[13] O. Gamayun, N. Iorgov, O. Lisovyy, Conformal field theory of Painlevé VI, JHEP 2012, No. 10,
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Kyoto Univ. 18, (1982), 1137–1161.
[18] A. V. Kitaev, D. A. Korotkin, On solutions of the Schlesinger equations in terms of Θ-functions,

Int. Math. Res. Notices 17, (1998), 877–905.
[19] O. Lisovyy, Yu. Tykhyy, Algebraic solutions of the sixth Painlevé equation, arXiv:0809.4873
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